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Audience 
The intended audience for this doc is anyone who is interested in making the systems they work 
on more fair.  This includes SWEs, PMs, policy folks, etc.   
It is developed specifically in light of the machine learning fairness issues for people working 
with machine learning. 
 
This document serves to describe the “ML” part of ML Fairness, helping to inform policy and 
preferred methods. 

Background and Goal 
Multiple projects in Google consider the role that “bias” plays in our technology.   
The term “bias” in machine learning refers to many things.  In this document, we focus on tools 
and metrics for algorithmic fairness. 
 
From a machine learning perspective, there are a few ways to identify fairness: 

1. Specifically for subgroups in the data (see Subgroups doc), measuring output on those 
subgroups using automatic evaluation metrics such as those available from the 
confusion matrix. 

2. Slice Finding, where particularly error-prone regions of your dataset are presented. 
3. Active Learning, where the system tells you the training instances that it’s struggling 

with the most, and you help it out. 
4. Manually viewing and analyzing reported failures, reproducing those errors in data 

collected, and adding them to relevant evaluation subsets. 
5. Thinking of possible biased failures, stress-testing them, and then hand-tweaking the 

model to handle those cases. 
 
This document focuses on the first case, 1, while also calling out cases where 3, active learning, 
would be beneficial as well.   
 
We break the problem down into a few parts: 

1. Data (collection, annotation, processing) 

 

https://docs.google.com/document/d/1GaTOMWUTRZpiHWrTvxEyz6IVlJLR3V26XCYKmYrbk5A/edit#bookmark=id.b837v5261h49
http://go/ml-fairness-subgroups
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2. Evaluation (what to measure and why) 
3. Modeling (what is the machine learning modelling, and what is it not) 

a. Architecture 
b. Hyperparameters 
c. Features 
d. Variables 
e. Objective Function 

 
In all of the above, systems with unfairness in them stem in part from the following issues:  3

 

Causes of Unfairness from “the world” that 
we might reflect in our projects when using 

some of the world’s data. 

Causes of Unfairness in our procedures that 
we might reflect in our projects. 

● Implicit associations 
● Implicit stereotypes 
● Group Attribution error 
● Out-group homogeneity bias 
● Halo effect 
● Stereotypical bias 
● Prejudice 
● Reporting Bias 
● Selection Bias 

● Correspondence bias 
● In-group bias 
● Bias blind spot 
● Confirmation bias 
● Subjective validation 
● Experimenter’s bias 
● Choice-supportive bias 
● Insensitivity to sample size 
● Neglect of probability 
● Anecdotal fallacy 
● Illusion of validity 
● Automation bias 

Table 1:  Causes of Unfairness from Humans 
 
The goal of this document is to help kick-start the conversation on how to we might begin to 
works towards systems where no subgroup of users, such as users in a Fairness Vanguard 
system, receives disproportionately worse output/behavior from a system, or significantly 
worse outcomes.  To do so, this document provides details of metrics relevant fairness, with 
links to more corresponding code and case examples increasing over time. 

Why is this Important? 
Google strives for algorithmic fairness across products.  As we begin to craft policy around 
algorithmic fairness, this document starts to outline the nitty-gritty of how we can measure and 
promote optimally equal outputs for users -- at the level of the math, algorithms, and code.   

3  Built with the help of The Cognitive Bias Codex: 
https://upload.wikimedia.org/wikipedia/commons/a/a4/The_Cognitive_Bias_Codex_-_180%2B_biases%2C_de
signed_by_John_Manoogian_III_%28jm3%29.png 

 

http://go/fairness-vanguard
https://upload.wikimedia.org/wikipedia/commons/a/a4/The_Cognitive_Bias_Codex_-_180%2B_biases%2C_designed_by_John_Manoogian_III_%28jm3%29.png
http://go/fairness-vanguard
https://upload.wikimedia.org/wikipedia/commons/a/a4/The_Cognitive_Bias_Codex_-_180%2B_biases%2C_designed_by_John_Manoogian_III_%28jm3%29.png
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Many checks and balances are being put in place to help provide an equitable experience across 
user subgroups.  When those checks and balances require a deep dive into the model itself, this 
document provides the starting point of what to do. 

Relevant Documents, Groups 

Documents 

1. go/fair-not-default 
2. go/links-fairness 
3. go/ml-fairness-prd 
4. go/algorithmic-unfairness-definition 
5. https://g3doc.corp.google.com/experimental/model_understanding/g3doc/tools.md 
6. Directional Awareness (Kona models, Smart Reply) 
7. Algorithmic Bias Testing Playbook 
8. [Perspective] ML Fairness 
9. Equality of Opportunity in Machine Learning 
10. Learning Fair Representations 
11. Beyond Globally Optimal: Focused Learning for Improved Recommendations 
12. Frustratingly Easy Domain Adaptation 

Groups 

13. go/ml-fairness 
14. go/data-fairness 
15. go/biasgang  
16. go/fairness-vanguard 
17. go/glassbox 
18. go/jigsaw 
19. Master I^2 Tracker 
20. go/uhs 
21. go/mlx 
22. go/pair 

Datasets 

23. UCI Census Income Dataset 
24. UC Berkeley Admissions Dataset 

 

https://research.googleblog.com/2016/10/equality-of-opportunity-in-machine.html
https://www.cs.toronto.edu/~toni/Papers/icml-final.pdf
http://go/mlx
https://g3doc.corp.google.com/experimental/model_understanding/g3doc/tools.md
https://docs.google.com/presentation/d/1VOPJQ_NTRU9MjKZQTc9Iw79gmwD7LruaKVUb54ODVSQ/edit#slide=id.g18d027bb88_0_91
https://docs.google.com/a/google.com/spreadsheets/d/1hmrL9EFT-xGtCcsLCWrJ_9GdcSoDbNrP8DtiLa8AptU/edit?usp=sharing
http://go/algorithmic-unfairness-definition
http://go/uhs
http://go/fair-not-default
http://go/jigsaw
https://docs.google.com/document/d/1Sir8U83HKVmSO8tmGAVNUXJ-35onmG-3O5jVTyj3EQ4/edit#heading=h.v1878p3oikyi
http://go/fairness-vanguard
https://drive.google.com/file/d/0B7HlkIYTc2xsMVVPNGh2Wk9CN0tOT04zYnRPd0tLT185bjJJ/view
https://docs.google.com/a/google.com/document/d/1CFMhOpSDIZqy0i_26JKnkGavGfQQt3X8kiONswf-Pm4/edit?usp=sharing
http://go/pair
http://go/ml-fairness
https://docs.google.com/presentation/d/15gj2pBvQAHIVrACeZ3odKHxec9ts4AQ-X5bexW6YQTA/edit#slide=id.p
https://docs.google.com/document/d/123LvUATlWEUD6AzsloeGQt_LAdx0zli9FkjGCoxoQvI/edit#heading=h.5ulmpzmztvy7
https://archive.ics.uci.edu/ml/datasets/Census+Income
https://docs.google.com/a/google.com/document/d/1c32nwhd3W4DyP-a55KbLs1hp3uowW1YhEBqqd7ll4Uc/edit?usp=sharing
http://go/glassbox
http://www.umiacs.umd.edu/~hal/docs/daume07easyadapt.pdf
http://go/links-fairness
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Definitions 

Algorithmic Unfairness 
Algorithmic “Unfairness” at Google refers to algorithms that are unjust or prejudicial towards 
people.  For a detailed definition, see the Algorithmic Unfairness document. We approach this by 
grouping users into different subgroups, and working towards algorithms with output that does 
not disproportionately negatively affect any one subgroup. 

Fair Performance 
Fair performance is defined based on model performance and user experience. 

● For model performance, the proportions of true positives, false positives, and false 
negatives for system prediction categories should be relatively equal across subgroups. 
We discuss this in the context of a confusion matrix below. 

● For user experience, predictions over time should demonstrate that the relevance of 
learned user behavior increases while the relevance of user’s (known or inferred) 
personal attributes diminishes.  (Such as race, gender, etc -- see Static attributes 
definition below). 

● Performance is as close to equal as possible for an output category when the 
subgroups have roughly equivalent output for that category. 

○ And subgroups may need to be discovered/re-created within the data. 
○ Output should often include, for example, False Positive Rate and False Negative 

Rate. 
● However, that may not always be possible, due to Intrinsic Hardness issues discussed 

later.  In that case, we strive for optimally equal performance -- performance that is as 
close as can be to equal performance across subgroups. 

User Subgroups 
User subgroup categories may be either pre-defined or discovered in the data. 

● Pre-defined subgroup categories are those defined manually, and include categories 
based on race, income, sexual preference, gender, religion, age, and political affiliation.   

● Discovered subgroup categories are those based on the data available.  This includes 
weakly supervised clusters that aggregate users based on similar 
appearance/language/interactions with the technology, self-identified categories, and 
fine-grained categories that don’t necessarily correspond to the pre-defined categories 
for broad subgroups.  For example, for the broad subgroup “race”, we aim to discover 
subgroups without being bound by the U.S. Census categories 

● For product impact now, we merge the two:  Using broad pre-defined categories and 
consensually-annotated seed data to snowball the discovery of more and more group 
members.   

 

http://go/algorithmic-unfairness-definition
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● Moving forward in research, we are be exploring fully unsupervised fairness, also called  
prescient fairness (term from Maya Gupta), where we have no annotated samples.  

User Attributes 
User attributes may be either static or diachronic. 

● Static attributes are those that are relatively stable/unchanging for a user, or changing at 
a predictable/known rate.  These include race, national origin, gender, age, sexual 
preference, religion, political affiliation. 

● Diachronic attributes are that that change over time, defined by the user’s behavior with 
the system. 

Intrinsic Hardness 
We define a subgroup as intrinsically hard if accuracy is not positively affected by changes in 
data size, model capacity, and feature adequacy. 

Reporting Bias 
Reporting bias refers to the fact that what people talk about and share in the real world is a 
subset of the things that are true in the real world.   

● We specifically tend to mention things that are outside of our day-to-day-norms; we do 
not tend to mention the things that “go without saying”.   

● This can dramatically affect what our models learn from world data.  
● For example, using text-based statistics, the probability of murdering is much higher than 

the probability of exhaling.   
 
 
 
 
 
 
 
 

● In learning an embedding for a word like “gay”, the meaning will be overloaded with a 
“porn” connotation -- more so than for “straight”.   

● Note:  The approach of looking up number of results could be useful for talking about unfairness 
examples without exposing any google products directly. 

● Doing an image search for “professor”, you will see significantly more males than in the 
true distribution of male professors; “hot female” professor is a common modifying 
phrase for “professor”, but “male” is further down (ostensibly because it is less 
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mentioned -- it is treated as more intrinsic, or goes-without-saying, for professor).

 

Practices for Fairness in Machine Learning 
1. Fair data collection/annotation design 
2. Fair training data and development data 
3. Fair testing data 
4. Adequate modeling, including architecture and hyperparameters 
5. Fair training, with an objective function that is sensitive to optimally equivalent 

performance across user subgroups 
6. Fair features 
7. Fair variables 
8. Fair evaluation 

Tests for 2-8 are detailed in the Steps for Examining ML Systems with Disproportional Outputs. 

Metrics 

One way to create metrics relevant to fairness is to focus on creating 
similar/comparable experiences for all users. 
For product, this can mean modeling each user as a single data point rather than each user activity.  For 
example, in YouTube videos, we may want to model the users who watch YouTube as single data points, 
rather than modeling each video-watch as a single data point, which will favor users who watch YouTube more 
often. 
 

Model Performance:  Classification and Discrete Outputs 
We seek to measure the differences in predictions across subgroups. To do this, we calculate a 
confusion matrix of predictions on each subgroup, and make adjustments based on what this 
tells us. 
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The confusion matrix is a detailed view of how a system is performing.  Most groups are already 
using evaluation metrics that can be calculated from this, which we outline in the appendix. 
Most classification-based system evaluation is calculable directly from the confusion matrix. 
 
For evaluating the fairness of a model’s performance, we focus on the False Positive Rates 
(FPRs) and False Negative Rates (FNRs) between different subgroups.  These measure whether 
things are being overly predicted for some subgroup (FPR); and whether things are being overly 
left out for some subgroup (FNR).  Further extensions can be made to other evaluation metrics 
that are common in different products, listed below.  We aim to design algorithms so that 
different subgroups have roughly equal FPRs and roughly equal FNRs for different categories. 

● When FPR for a given category y is high for some subgroup, the model is overpredicting 
y for that subgroup.  See the Appendix, False Positive Cases, for a detailed breakdown of 
different FPR cases.  This happens for either subgroup attributes, when the model 
overpredicts an attribute is present for a subgroup, or subgroup identity, when the model 
overpredicts that a subgroup is present when it is not. 
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● Examples.  

○ These demonstrate False Positives for the subgroup “female”.  

 

● This image demonstrates a False 
Positive, potentially for a race subgroup.  It 
was submitted to us from someone who 
does not use this term in their texting. 

 
 
 
 

● When FNR for a given category y is high for some subgroup, the model is 
underpredicting y for that subgroup. See the Appendix, False Negative Cases, for a 
detailed breakdown of different FPR cases. 

To calculate FNR, FPR, and related metrics, create a confusion matrix. 
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The Confusion Matrix 
For each subgroup s, prediction category c: 
 

     Predictions psc   

    Predictions Positive  Predictions Negative  Calculate 

R 
e 
f 
e 
r 
e 
n 
c 
e 
s  

rsc 

References 
Positive 

The instances where the model 
predicts that something exists, and 
the reference says it does exist, are 
the True Positives. 
 
TP, True Positives = References 
Positive ∩ Predictions Positive 

The instances where the references 
say something exists, and the 
model does not predict it, are the 
False Negatives. 
 
FN, False Negatives = References 
Positive ∩ Predictions Negative 

Also known as Type II Error 

True Positive 
Rate/Sensitivity

/Recall  
 

False Negative 
Rate/Miss Rate 

References 
Negative 

The instances where the model 
predicts something exists, and the 
reference says it does not exist, are 
the False Positives. 
 
FP, False Positives = References 
Negative ∩ Predictions Positive 

Also known as a Type I error 

The instances where the references 
say something does not exist, and 
the model does not predict it, are 
the True Negatives. 
 
TN, True Negatives = References 
Negative ∩ Predictions Negative 

False Positive 
Rate/Fallout 

 
True Negative 

Rate/Specificity 

  Calculate  Precision/Positive Predictive 
Value, False Discovery Rate 

Negative Predictive Value, 
False Omission Rate 

LR+, LR- 

Table 2.  A Confusion Matrix.  Create for each (subgroup, prediction) pair.  Compare across 
subgroups for each prediction category. 

 
 
In designing your project, make sure that you make a good decision about trade-offs between 
false positives/false negatives/true positives/true negatives.  For example, you may want very a 
low false positive rate, but a high true positive rate.  You may want a high precision, but a low 
recall is okay.  Etc. 

● ɰ ɰ Choose your evaluation metrics in light of these desired tradeoffs. 
 
In what follows, we lay out a step-by-step approach for minimizing disproportional outcomes 
across subgroups.  We refer to this as optimally equal values for FPR and FNR. 
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Steps for Examining ML Systems with Disproportional Outputs 
Measure whether disproportionately poor prediction on one subgroup is a function of the data, 
architecture, hyperparameters, features, variables, or training procedure.  Steps for this are 
outlined below. 
 
At a high level, the idea is: 

(1) Collect the data well and preprocess it well 
(2) Check where there are potential problems (subgroup evaluation) 
(3) Examine the effect of data to determine whether to add more data and/or address 

modelling issues (model adequacy, model capacity). 
(4) If neither help, or adding more data is prohibitive, check feature and variable adequacy. 
(5) If none of this helps, consider updating your objective function. 
(6) If steps outlined in (2) through (5) do not improve performance on a subgroup, we 

categorize it as intrinsically hard -- a subgroup that is more difficult to get equivalent 
performance on, all else equal, including model design, optimal hyperparameters, and 
equal number of training data instances with other subgroups. 

 
We assume that systems have a pre-defined, well-motivated evaluation metric that they are 
using.   

● The evaluation metric should be designed so that it has the best product-specific 
trade-offs better true positives, true negatives, false positives, and false negatives (see 
the Confusion Matrix).   

● For a product example, some systems may want to have low recall (missing a lot of 
stuff) in exchange for high precision (of the limited amount of stuff the system produces, 
it’s all correct). 

● In clinical domains, it’s often preferred to have a low false positive rate, but a high true 
positive rate (see Confusion Matrix). 

● Please see The Appendix for details on different evaluation metrics. 
 
Step 1. Data collection and preprocessing  Addresses Fairness Question:  Is your data 
collected to minimize the effects of Causes of Unfairness from Humans (Table 1)? 
Problem Area:  Data Collection 
Need to be added as its own doc. 
 
From this step, we produce:  Training Data, Val-Train Data, Val-Test Data, and Test 
Data (held out) 
Usually the full dataset is split up to something like, 60% train, 10% val-train, 10% val-test, 
20% test 
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Step 2. Subgroup Evaluation Addresses Fairness Question:  Are subgroups treated 
equally by your system? 
If any of these tests show unfairness across subgroups for a prediction category, move to 
Step 3. 
Many of these checks may be possible to do through go/mlx-lantern. 
 
Global Model 

● Train a full model using the training data. 
● In the val-test data, for each subgroup s, for each prediction category sc, 
● Create a Confusion Matrix.  

○ Use the model trained on the training data to make predictions on the val-test 
set. 

○ For each subgroup category sc, pull out the predictions and the references 
(ground truth). 

○ If this is a ranking/score system, then the category sc is the bracket/position/tier. 
i. Example:  “Top 1”, “Top 5”, “Top 10”, “Will Get Loan”, “Will Not Get Loan” 
ii. A common evaluation metric is Precision@K.  That is, out of the top K results, 

what is your precision?   
iii. Other options: FPR@K and FNR@K. 

○ Example:  For subgroup s based on Race, your category might be “has flowers”, 
and your outputs might be “True” and False”: 

i. The number of correct “True”s are your True Positives (TP).   
ii. The number of correct “False”s are your True Negatives (TN).   
iii. The number of incorrect “True”s are your False Positives (FP). 
iv. The number of incorrect “False”s are your False Negatives (FN). 
v. This is the subgroup attributes binomial case. 
vi. From these values, you calculate FPR and FNR. 

○ Example:  For subgroups s based on Race, your category might be “has X”, and 
your possible predictions might be “flowers”, “dishes”, and “puppies”.  For the 
“flowers” prediction: 

i. The number of correct “flowers” are your True Positives.   
ii. The number of times you correctly do not predict “flowers” are your True 

Negatives.   
iii. The number of incorrect “flowers” predictions are your False Positives. 
iv. The number of times you incorrectly do not predict “flowers” when they are 

actually there are your False Negatives. 
v. This is the subgroup attributes multinomial case. 
vi. From these values, you calculate FPR and FNR. 

● Calculate the target task evaluation metric, the False Positive Rate (FPR) and False 
Negative Rate (FNR) for each subgroup s, prediction category c: 

● False Positive Rate = FP / (TN + FP) 
● False Negative Rate = FN / (TP + FN) 
● The FPR values here ideally will be roughly equal for all subgroups.   

 

https://g3doc.corp.google.com/intelligence/lantern/g3doc/index.md?cl=head
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● Similarly, the FNR values here ideally will be roughly equal for all subgroups, if they can 
be. 

● Ditto for whatever target evaluation metric you’re also working with. 
● If they’re not, then that is one source of system unfairness. 

 
Subgroup-specific Models 
Same as above Step, but train individual models, one for each subgroup, testing on the val-test 
data.   

● If the subgroup does not have enough instances to train an ML model (thousands of 
examples), this is not feasible.   

● If there is enough data, then you can check out whether a subgroup-specific model is 
succeeding when a global model is failing, and if so, make a move to bring in 
subgroup-specific models. 

● If the subgroup-specific model is also doing poorly, move on to Step 3. 
 

If any of these tests show unfairness across subgroups for a prediction category, move to 
Step 3. 
 
Step 3.  Check Effect of Model and Data.  Addresses Fairness Question:  Do you need 
more data or a better model? 
Retrain and test new models as you gradually increase the training data.   

● For each subgroup, plot the target evaluation metric, the FNR, and FPR values on the 
y-axis, vs. the amount of training data (# examples) on the x-axis.  

○ Create Plots For: 
■ Subgroup category predictions, model trained only on data from the 

subgroup. 
■ Subgroup category predictions, model trained on the overall data. 

○ For each of the above, model initialized from the overall population model. 
● Could additionally put all the subgroups on the same plot to observe the differences 

between subgroups. 
● For these plots, overlay and include: 

○ The same plot for all data 
○ The same plot for all data but the subgroup 
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Table 3.  Example outcomes from plotting the subgroup False Positive Rate vs. the full 
population model (rest-of).  Depending on the difference between the curves, you could 

find evidence for more data, a better model, or intrinsic hardness of the problem. 
 

 Problem Area:  Model Inadequacy 
● There is model inadequacy if you see: 

○ Evaluation on a subgroup improves (e.g., the False Positive Rate goes down) 
when the model is trained specifically on that subgroup, but the improvement is 
much weaker for that subgroup when the model is trained on the full dataset 

○ The curve is not showing a good trend (see orange line in Table 2) 
● This can be due to a couple things relevant to the model itself: 

○ Insufficient model capacity in the global model. 
■ ML Technique:  Change the model architecture to allow for increased 

modelling capacity. 
● Deeper or wider models 
● Check out go/wide-n-deep to leverage the benefits of both. 

○ Inadequate hyperparameters:  A model may have adequate capacity, but is tuned 
to perform well for larger subgroups that make up the bulk of the overall data. 

■ Integrate details from Beyond Globally Optimal. 
■ Choose hyperparameters to do well across subgroups, not just to do well 

on the aggregate, overall data.] 
■ Use go/vizier to make selections. 

● This may also be solvable with simple changes to the data: 
○ ML Technique:  Threshold/cap the number of data points for the largest 

subgroups. 

 

https://drive.google.com/file/d/0B7HlkIYTc2xsMVVPNGh2Wk9CN0tOT04zYnRPd0tLT185bjJJ/view
http://go/vizier
https://sites.google.com/corp/google.com/wide-n-deep
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■ If your model is saturated with data from the largest subgroups, it may 
“overfit”, or it may be spending all it’s modeling power on those 
subgroups, at the expense of the others. 

○ ML Technique:  Duplicate/augment data instances of the minority class. 
■ Simply duplicating instances can help, although testing in this case 

should be rigorous:  The concern with simply duplicating instances is that 
the model will “overfit”, meaning it will create strong correlations between 
things that are not actually correlated in the test/run-time data. 

■ More details on domain adaptation in these cases would be useful to 
include here; not yet done. 

 
 Problem Area:  Data Inadequacy 

● If evaluation metric values are not levelling off for the subgroup, but actually seem to be 
improving as you increase training data, you now have some motivation to augment data 
for that subgroup.  See the red line in Table 2. 

○ ML Technique:  Incrementally increase the training data for a given subgroup, 
plotting the changes in FNR and FPR as before until equal output performance is 
achieved. 

■ The ideal amount of data needed can be estimated from the trend line on 
your plot. 

○ Not working?  If performance begins degrading for the rest of the development 
data, or for other subgroups, go to Step 4. 

○ If data augmentation cost is prohibitive, or if doing so does not seem to improve 
equitability, go to Step 4. 

 
If none of these solutions fix the problem, or if the estimated amount of data you would 
need is cost-prohibitive, move to Step 4. 
 
Step 4. Check Feature and Variable Adequacy.  Addresses Fairness Question:  Do you 
need better features or variables? 

● If one subgroup gets significantly lower evaluation scores given the same amount of 
training data, or performance is not improving as we scale up the amount of training 
data, this suggests we need new features or new variables, more data won't necessarily 
be enough. 

○ Example:  Smart Reply seems to be preferring one outcome for women, another 
outcome for men, and one is better than the other.  In deep learning space, 
“gender” might not be an explicit feature -- it may have been learned implicitly -- 
and this is creating an unfairness issue. 

 Problem Area:  Feature and Variable Inadequacy 
● To guide the creation of new variable and features, make some of the implicit explicit: 

○ Use RankLab to see what features are being given the most weight. 
○ Do Feature Ablation (also possible with RankLab) to remove features and see the 

 

http://go/RankLab
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effects on down stream performance. 
○ Use active learning to find weak data points that should be labelled, 

bolstered. 
■ In active learning, the places where the model struggles the most during 

training are output to humans -- to provide additional annotations, or more 
training data in light of the model’s confusion. 

○ Predict implicit categories that may be at play, such as those within sensitive 
groups. 

■ Examine correlation between implicit categories and desired categories. 
■ Based on your findings, you might, e.g., preferentially select features or 

data that move away from these correlations; or remove data/features 
that enforce these correlations. 

○ Manually inspect content given similar representations by your system. 
■ Using e.g., pairwise cosine distance between last hidden layers, where 

one instance produces an incorrect output and the other instance 
produces a correct output, and find those instances that are closest 
together. 

○ Manually inspect errors in low-confidence cases and high-confidence cases. 
● As discussed above, when we learn from naturally occuring data, they will already be 

biased because of reporting bias.  This means biased features, reflecting the bias in 
your data. 

● ML Technique:  “Debias” your features, for example, debias your embeddings. 
○ See: Man is to computer programmer as woman is to homemaker?  Debiasing 

word embeddings 
○ Code being developed at google3/learning/fairness. 

■ Possible partners:  YouTube, Rephil 
● ML Technique:  Develop new features, iterate from Steps 2-4 to measure their effect. 
● ML Technique:  Develop auxiliary tasks to predict new variables, use a multi-task 

learning framework, iterate Steps 2-4 to measure effect. 
○ See go/tf-multitask and Lantern’s support for multi-headed models. 
○ For example, if your deep learning model is overpredicting LGBT content as toxic, 

update the model to predict “LGBT/Straight”, as well as 
“positive”/”negative”/”neutral”, and toxicity.  This can be trained jointly end-to-end 
so as not to need too much additional compute resources.   

■ If you want to get fancy, more coarse-grained tasks should be earlier in 
your model than the more fine-grained tasks, rather than all at last layer of 
the model.   

● ML Technique (less preferred):  Develop auxiliary tasks to predict new variables, use a 
pipeline framework, iterate Steps 2-4 to measure effect.   

○ For another example, if your pipeline system is overpredicting LGBT content as 
toxic, first predict LGBT; use those scores as input features to a second step to 

 

http://go/tf-multitask
https://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings.pdf
https://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings.pdf
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predict “postive/negative/neutral”; use those scores and the previous LGBT 
scores as input features to predict toxicity. 

● ML Technique:  Active learning to discover samples that should be additionally 
annotated. 

○ In active learning, the places where the model struggles the most during training 
are output to humans -- to provide additional annotations, or more training data in 
light of the model’s confusion. 

 
Step 5:  Objective Function   Addresses Fairness Question:  Do you need a different 
objective function? 
Problem Area:  Objective Function 

● This one’s tricky.   
● Here’s the tl;dr: Machine learning is used to train a model.  The model is trained by using 

an objective function.  This objective function (OF) can be problematic. 
● Many objective functions do some form of “maximum likelihood estimation” (MLE). 

Roughly, this pushes the model to have its parameters/weights make the training data 
the most likely output of the system. 

○ Several areas of concern here. 
○ Overfitting:  Spurious correlations in your training data are treated as meaningful 

correlations, even when they are not (or are, e.g., prejudicial/harmful). 
○ Overgeneralization:  If your training data has a distribution over outcomes such 

as “70% A, 15% B, 10% C, 5% D”, this can get overgeneralized in your model as 
“80% A, 20% B” -- the less likely and minority cases can get washed out.   

● This is a big move, but one option is to change the objective function. 
○ Incorporate explicit fairness constraints. 
○ See Equal Opportunity and Equalized Odds. 

 
If Steps 2-5 have all been tried, and still one subgroup does not show signs of improving, or 
continues to get significantly lower accuracy → The data for a subgroup has “Intrinsic 
Hardness”.  (See green line in Table 2.) 

● Putting it another way: if you have a bunch of smart ML researchers try to train the best 
model they possibly can for the "harder" subgroup, and they still can't get the same 
accuracy as the "easier" subgroup, then the problem is intrinsically harder.  Go to 
Research Approaches for Equitability. 

For now, ML Technique: focus energy on modelling that subgroup in particular, including 
increasing data, changes to model, which may include additional predictions and constraints in 
a multi-task learning framework, and changes to features. 
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Model Performance:  Continuous Outputs 
Systems that output a real value rather than a hard class label require a somewhat different 
procedure.  These are often regression-based systems, and examples include pricing, 
probability estimation like pCTR, risk scores, etc.  
 
In each case, the work here applies to evaluating the final category decisions based on these 
scores.  For example, in a system that uses scores to determine whether something is “in” or 
“out”, those “in” and “out” decisions are what we can evaluate fairness on, using the 
classification-based methods above.  Precision@K is a common metric to use, meaning that 
out of the top K outputs from your system, what is the precision within that K?  False Positive 
Rates and False Negative Rates, as described above, can be useful for the task of determining 
fairness:  False Negative values get at how much the system is missing. 
 
In further work, we will add more details about continuous outputs.  For now, the recommended 
practice is to use the classification-based fairness evaluation, using the output category 
decisions from a score-based system. 

User Experience 

Steps towards Equitable User Experiences 
User Experience Test:  Measure whether any subgroups are receiving unfair information from 
the system. 

 
Subgroup experiences should also be fair.  Testing this can involve measuring what percentage 
of things that the users are exposed to are biased towards some X.  On the other hand is the 
related issue of testing whether users within a subgroup are receiving reasonably well-informed 
diversity , as additional system objectives are ment (e.g., user engagement). 4

 
Similarly, an end-to-end ranking metric may aim to show results that provide equal 
opportunities, equal positive experiences, for each subgroup.  This can be checked in part by 
examining the probabilities for different labels, based on subgroup memberships. 
 
For evaluating the fairness of a user’s experience, we focus on measuring the effect of static 
user attributes on model prediction, and calculating the correlation between output predictions 
and users’ static attributes. 
 
Step 1.  Measure how static attribute effect much static attributes are influencing system 
decisions for different subgroups. 

4  Not all diverse options should be equally encouraged for a user, hence we say “reasonably 
well-informed” diversity. 
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1. Let u = observed user behavior with the system, a = sensitive attributes, and q  = a correct 
predicted value  

2. p(q|u,a) should tend towards p(q|u,a’) over time. 
a. Probability of output given mutable and immutable should tend towards 

Probability of output given mutable and any other immutable. 
3. This is Equality of Opportunity in Machine learning. 
4. Work towards user experiences that are agnostic to variations across sensitive 

attributes, unless it’s an attribute that should be treated differently (e.g., accessibility, 
neuroatypicality). 

a. One way to do this is to swap correlated behaviors for one subgroup into the 
behaviors for another subgroup; do this round-robin so that each subgroup has 
representations for behaviours correlated with another subgroup’s behavior. 

b. The probability of q across these swaps should remain the same. 
c. To be tested regularly, e.g., every week. 

 
Step 2.  If a static attribute remains relevant, ML Technique: fine-tune or retrain the model with 
the addition of the observed user behavior types as additional attributes. 

Testing Significance 
● tl;dr:  Testing significance on the same data more than once requires correction to 

handle increased chances of finding significance with multiple tests.  Methods to handle 
this include: 

○ Bonferroni Correction (ML Technique):  For your desired p-value, simply divide by 
the number of tests you are running.  So, if your p=.05, and you number of tests is 
10, then your Bonferroni-corrected p-value is: .05/10 = .005 

■ Bonferroni-corrected p-value = given p/number of tests 
○ Fisher’s Combination Test 

● For any test you run to be scientifically valid, you must see if the null hypothesis can be 
rejected.  The null hypothesis simply states that the observed differences between 
groups are due to random chance. 

○ Example Null Hypothesis:  There is no statistically significant relationship between 
the number of features and precision on subpopulations A and B.  

○ Example Null Hypothesis:  Model is equally good for all users. 
● From the null hypothesis, you can derive the alternative hypothesis: 

○ Example Alternative Hypothesis:  This is a statistically significant relationship 
between the number of features and precision on subpopulations A and B. 

○ Example Alternative Hypothesis:  Model is not equally good for all users. 
● When you test significance, you are essentially asking “how likely is it that these 

observations are due to random chance?”.   
● However, the more you test significance, the more the chances of finding significance 

increases.  This is also known as p-hacking, and has been written about extensively.  Use 
the Bonferroni Correction or similar to correct for this. 

 

https://en.wikipedia.org/wiki/Data_dredging
https://arxiv.org/abs/1610.02413
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● Monte Carlo Simulation: Look at different slices/views of data and measure there. 
Under the assumption of equitability/fairness across predictions, we would find that 
accuracy is roughly the same across different simulations. 

● Once we discern that something is not due to random chance, turn to:  Is this because 
that subsample is intrinsically hard, or extrinsically hard? 

 

Research Approaches for Fairness  
Ordered so that more straightforward work is at top, more speculative work closer to bottom. 

Latent Attributes 
ML Technique: Train models to predict attributes for each labeled prediction, then explore the 
attribute predictions on the valtest set to dig into what assumptions the model is implicitly 
making, and how this differs across groups. Adjust model to expliclity model and address these 
attributes when making predictions.   

○ This can be done in a multi-task learning framework, where several things are predicted, 
including the target category and a relevant subgroup. 

○ For example, given a model that predicts “professor”, fine-tune it to predict subgroups 
that are relevant to fairness groups, such as “gender”, by predicting the fine-grained 
subgroups of, e.g.,  “male” and “female”. 

■ If “professor” and “male” predictions align, or the average of the last hidden 
layers for each are close together in vector space, then you know your model is 
biased in that direction. 

Equalized Odds 
[Modified from Equal Opportunity paper]  
Based on protected attributes.  We say that a predictor   satisfies equalized odds with respectY

︿

 
to protected attribute   and outcome if   and  are independent conditional on .A Y

︿

A Y   
Unlike demographic parity, equalized odds allows   to depend on   but only throughY

︿

A  
the target variable  . As such, the definition encourages the use of features that allow toY  
directly predict  , but prohibits abusing   as a proxy for  .Y A Y    

As stated, equalized odds applies to targets and protected attributes taking values in any 
space, including binary, multi-class, continuous or structured settings. The case of binary 
random variables  ,  and   is of central importance in many applications, encompassing theY Y

︿

A  
main conceptual and technical challenges. As a result, we focus most of our attention on this 
case, in which case equalized odds are equivalent to:  

 

y 0, }  P Y  | A , Y(︿

= 1 = 0  = y) = P Y  | A , Y(︿

= 1 = 1  = y) ,  ∈ { 1  

 

 

https://arxiv.org/pdf/1610.02413.pdf
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For the outcome  , the constraint requires that  has equal true positive rates across they = 1 Y
︿

 
two demographics and . For  , the constraint equalizes false positive rates. TheA = 0 A = 1 y = 0  
definition aligns nicely with the central goal of building highly accurate classifiers, since  YY

︿

=  
is always an acceptable solution. Equalized odds enforces that the accuracy is equally high in 
all demographics, punishing models that perform well only on the majority. 
 

Equal Opportunity 
Based on protected attributes.  A relaxation of equalized odds, requiring non-discrimination only 
within the “advantaged” outcome group; say when  . This leads to a relaxation of ourY = 1  
notion that we call “equal opportunity”. 
 
We say that a binary predictor  satisfies equal opportunity with respect to  and  ifY

︿

A Y   

 P Y  | A , Y(︿

= 1 = 0  = 1) = P Y  | A , Y(︿

= 1 = 1  = 1) .  

 
Equal opportunity is a weaker notion of non-discrimination, and thus typically allows for stronger 
utility (see case study below). 
 
A score   satisfies equalized odds if   is independent of   given   . If a score obeysR R A Y  
equalized odds, then any thresholding  of it also obeys equalized odds (as does anyY

︿

= I {R }> t  
other predictor derived from   alone).R  

Entropy Measures 
A number of algorithms leveraging entropy (e.g., cross-entropy error, perplexity, surprisal, KL 
divergence) can be used to stress-test how well different trained models are fit to the training 
data in each group by comparing these metrics across different batches within a group. 

Variance 
Looking at within-group variance, as well as entropy differences within different subgroups, can 
help to define which groups might benefit from having some instances move to another 
cluster/group membership, or new cluster/group membership  

Reporting Bias 
[Adapted from Reporting Bias paper] 

● Train models to predict latent (sparsely labelled) attributes that may or may not be 
observed/annotated/mentioned. 

○ Examples:  sexual, emotional, violent 
● A human-biased prediction h can be factored as: 

 

http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Misra_Seeing_Through_the_CVPR_2016_paper.pdf
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○ Presence v – Is the object present? 
○ Relevance r – Is the object relevant for a human? 

 
 
 

How relevant is the concept, given presence status? Is concept present?

 

This builds up the “latent” model of whether the concept is present or not -- even if it’s not 
explicitly mentioned/annotated.  

Prediction Bias 
Compute and compare prediction bias for different subgroups. It is reasonable to compute and 
compare prediction bias E[H(X) | A] - E[Y | A] across suitably large populations A. 

Area Between F*R Rates 
A model tested on a particular subgroup, vs. a model tested on the rest of the data with that 
subgroup removed, will show different rates of change as the amount of training data increases. 
 

Table 2.  Example different rates of 
improvements in subgroup 
predictions (target-subgroup) vs. 
predictions for the full dataset. 

 
The difference between the slope 
of the rest-of predictions and the 
target-subgroup predictions 
provides a direct measure of the 
equitability of data increase. 

GANs to Augment Training data  
Use generative adversarial network training with minibatch discrimination (to improve sample 
diversity) within each subgroup.  As in regular GAN training, the generator creates additional 
faces for each batch within a cluster, and the discriminator tries to distinguish whether the 
faces have been artificially generated, or belong to the cluster.  Once the model is done training, 
we can use the network to then generate new training instances to subgroups. 
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Note that it is difficult to measure a classifier’s performance when the evaluation data is very 
small, since a small amount of evaluation data is not necessarily going to be a representative 
sample of the population. The approach would be to hold out as much testing data as possible 
(of real data), while training on the synthetic GAN data.  

CycleGan 

Models like CycleGAN can literally turn apples into oranges. We could use something like 
CycleGAN to turn records from one subgroup into their equivalent from another subgroup. This 
would allow you to ask questions like "would this person have been granted parole if they 
belonged to a different race?" etc. 

Appendix 

Common evaluation metrics for classification-based systems 
 

● False Positive Rate, FPR = FP/(TN+FP) 
○ “Fall Out” 
○ “Probability of False Alarm” 
○ This metric measures how often the system makes predictions that 

should not be made. 
● False Negative Rate, FNR = FN/(TP+FN) 

○ “Miss Rate” 
○ This metric measures how often the system misses predictions that 

should be made. 
● Precision = TP/(TP+FP) 

○ This metric measures that, for all the predictions made, how correct they 
are. 

● Recall, Sensitivity, True Positive Rate = TP/(TP+FN) 
○ This metric measure that, for all the predictions made, how much is being 

left out. 
● Specificity = TN/(TN+FP) 

○ This metric measures that, for all predictions made, how much is correctly 
left out. 

● Mean Average Precision (mAP) 
○ This metric measures the mean of the average precision scores for each 

query.  
● F-score (F1) = 2 * (Precision * Recall) / (Precision + Recall) 

○ This metric measures the harmonic mean of precision and recall, with 
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both equally weighted.   
○ Other harmonic mean F-scores could weight them differently, e.g., 

prioritizing precision by not recall. 
● Receiver Operating Characteristic (ROC) Curve 

○ Graphical plot for False Positive Rate and True Positive Rate 
● Area Under the ROC Curve (AUC)  

○ This metric measures the area under the ROC curve -- is used as a 
measure of accuracy. 

 

False Positive Cases 
When FPR for a given category y is high for some subgroup, the model is overpredicting y for 
that subgroup.  This happens for either subgroup attributes, when the model is overpredicts an 
attribute is present for a subgroup, or subgroup identity, when the model overpredicts that a 
subgroup is present when it is not. 
 

  

Case 1  Case 2  Case 3  Case 4 

Subgroup 
Attributes, 
Binomial 

Subgroup 
Attributes, 
Multinomial 

Subgroup Identity, 
Binomial 

Subgroup Identity, 
Multinomial 

The model incorrectly guesses that an 
attribute of a subgroup is present when it 
is not. 

The model incorrectly guesses that a 
particular subgroup is present when it is not. 

Examples 

For instance of subgroup_a, model 
incorrectly guesses that the instance is 
“toxic” (when it is not). 

For an instance of subgroup_b, model 
incorrectly guesses that subgroup_a is 
present (when it is not). 

category: is_toxic 
values: True, False 
ref: is_toxic=False  
y: is_toxic=True 

category: is 
values: toxic, 
awesome, so-so 
ref: is=awesome 
y: is=toxic 

category: sub_a 
values: True, False 
ref: sub_a=False 
y: sub_a=True 

category: 
subgroup_id 
values: sub_a, sub_b, 
sub_c 
ref: 
subgroup_id=sub_b 
y: subgroup_id=sub_a 

For instance of 
subgroup_a, 
category “holding 

For instance of 
subgroup_a, 
category “holding”, 
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flowers”, model 
incorrectly 
guesses that they 
are holding flowers 
when they are not. 

model incorrectly 
guesses that the 
value is “flowers” 
when it is not. 

category: 
holding_flowers 
values: True, False 
ref: 
holding_flowers=F
alse 
y: 
holding_flowers=T
rue 

category: holding 
values: flowers, 
puppies, plates 
ref: holding=puppies 
y: holding=flowers 

   

 

False Negative Cases 
When FNR for a given prediction category y is high for some subgroup, the model is 
underpredicting y for that subgroup. 
 

  

Case 1  Case 2  Case 3  Case 4 

Subgroup Attributes, 
Binomial 

Subgroup Attributes, 
Multinomial 

Subgroup Identity, 
Binomial 

Subgroup Identity, 
Multinomial 

The model regularly incorrectly guesses that an 
attribute of a subgroup is not present when it is. 

The model regularly incorrectly guesses that a 
subgroup is not present when it is. 

Examples 

For an instance of subgroup_a, the model incorrectly 
guesses that people from a particular subgroup are 
not holding flowers when they are. 

For an instance of subgroup_a, the model 
incorrectly misses that subgroup_a is present. 

category: 
holding_flowers 
values: True, False 
ref: 
holding_flowers=True 
y: holding_flowers=False 

category: holding 
values: flowers, puppies, 
plates 
ref: holding=flowers 
y: holding=puppies 

category: subgroup_a 
values: True, False 
ref: subgroup_a=True 
y: subgroup_a=False 
 

category: 
subgroup_id 
values: subgroup_a, 
subgroup_b, 
subgroup_c 
ref: 
subgroup_id=subgro
up_a 
y: 
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subgroup_id=subgro
up_b 

 

 

 






