
7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 1/15

Superroot

Twiddler Quick Start
Guide

 Review outdated · Reviewed by smunteanu on 2017-11-30 · Updated 2018-01-26

go/twiddler-quickstart

Introduction

The twiddler framework is the part of Superroot (http://go/sr)
responsible for re-ranking of results from a single corpus. (The other
major ranking component in Superroot is the universal packer, which
combines results from multiple corpora, i.e., for universal search.)

This article is a summary of what the twiddler framework can do and of
guidelines to using its various features. It is by no means an exhaustive
discussion, but rather a starting point for further study. If you haven't
used twiddlers before, we hope that this will give you enough to know
whether you should look deeper: there are also links to larger
documents and wikis scattered around this article and we are happy to
chat. If you've done ranking since before there were twiddlers, we hope
you'll still find some interesting perspective. In any case, please check
the Twiddler YAQS queue if you have any questions.

A twiddler is a C++ object that makes ranking recommendations
(twiddles) given a provisional search response from a single corpus.
Twiddling differs from Ascorer ranking in that twiddlers act on a ranked
sequence of results, rather than results in isolation.

There are two supported types of twiddler: predoc and lazy. Predoc
twiddlers run on thin responses, which typically have several hundred
results that don't contain any docinfo (snippets and other data). These
twiddlers run over the full set of results returned from the backend.



https://g3doc.corp.google.com/superroot/g3doc
https://teams.googleplex.com/smunteanu
https://critique.corp.google.com/#search/&q=is:submitted%20f://depot/google3/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md&type=cl
https://teams.googleplex.com/smunteanu
https://goto.google.com/twiddler-quickstart
http://go/sr
http://go/twiddler-yaqs
https://cs.corp.google.com/#piper///depot/google3/quality/twiddler/twiddler.h


7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 2/15

After all predoc twiddlers have run, the framework reorders the thin
results. It then makes an RPC that fetches docinfo for a prefix of the
results, runs lazy twiddlers on that prefix, and attempts to pack a
response. This attempt can fail if, for example, lazy twiddlers filter
results from the top or push them down the ranking. In that case the
framework fetches more docinfo, lazy twiddles the new results, and
tries packing again.

More information about this packing flow can be found in the
SuperrootBasicIntro.

Goals and design principles

Isolation: In contrast to Ascorer, which has relatively few but
complex algorithms developed over longer periods, the twiddler
framework supports hundreds of twiddlers (>65 are currently
active in production in WebMixer alone), each trying to optimize
for certain signals. Under these conditions, letting each of these
components depend on the behavior of the others would result in
unmanageable complexity. Therefore, the twiddler framework
conceptual model is of twiddlers in isolation (without knowledge of
the others' decisions).
Interaction resolution: Because twiddlers run in isolation, they can
only provide constraints and recommendations of how to change
the ranking. The framework then reconciles these constraints.
Provide context: The framework provides safe read-only access
to the context in which results are being twiddled.
Hide the complexities of docinfo fetching and pagination: By
constraining the operations that lazy twiddlers may perform, the
twiddler framework prevents a broad range of pagination bugs—
skipped or duplicated results across search result page
boundaries. This is covered more in the SuperrootBasicIntro.
Ease of experimentation: Because they run within Superroot it is
often easier to run ranking experiments by writing a twiddler (you
only need to bring up a few superroot jobs rather than building an
Ascorer section or attachment, or bringing up 1,400 jobs). On the
other side, if you need huge amounts of data, Ascorer is a better
choice.

Writing a twiddler

http://wiki/Main/SuperrootBasicIntro
http://wiki/Main/SuperrootBasicIntro


7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 3/15

To create a new twiddler, simply derive from the base Twiddler class
in quality/twiddler/twiddler.h and override the Apply method:

Twiddler::Apply(TwiddlerAPI* api, Rank start, Rank end, int debug, 

                Closure* done) 

api: Twiddlers call methods on this object to perform their re-
ranking operations. These methods are the focus of the majority
of the rest of this article.
start, end: The range of results that the twiddler is allowed act
upon, though it can examine the state of all results.
debug: The level of debugging requested. For a full discussion of
debugging see Debugging Options for Superroot.
done: Twiddlers must always call this closure when they are
done.

There are a few other minor implementation details, such as registering
the twiddler for construction, but they don't require much explanation.

So many flavors of twiddling. Which one do
I use?



https://cs.corp.google.com/#piper///depot/google3/quality/twiddler/twiddler.h
https://g3doc.corp.google.com/superroot/g3doc/user/howto/cookbooks/debugging.md


7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 4/15

We will discuss the various TwiddlerAPI methods in more detail later,
but first some advice: You don't need to understand all of twiddler.h to
use the twiddler framework; in fact, a large fraction of the methods
there have very specialized uses that only one or two projects need.
Here is a way to group the TwiddlerAPI operations that we find to be a
useful mind map:

Boost and BoostAboveResult: The bread-and-butter APIs and
what most ranking work uses. Almost all BU and most PQ wins
from twiddlers come exclusively from these two methods.
Filter, max_total, and stride categories: Used to increase
diversity, remove duplicates, reduce unwanted results such as
spam and foreign pages.
AnnotateResult, AnnotateResponse: Don't change ranking
directly; used to communicate with GWS and other parts of
Superroot.
SetRelativeOrder and max_position categories: Useful in very
special cases; tricky as they don't interact well with the rest of the
framework and need special considerations. Consult with
superroot-team@ if you think you need them.
merge_cluster and stride_demotion_factor categories:
Don't use them. Seriously.
There are also accessors and methods for debug, but they don't
need any special consideration at this point.

The way we generally recommend looking at the twiddler operations is
to use twiddler methods and category types to express semantic intent,
rather than focusing on the operational details of what they do and how
they interact. For example, don't use Boost when what you want is to
demote a result to the second page, and don't use max_position if
you've only determined that a result is better than than the current top
result (if you don't yet know what Boost or max_position mean, it's
ok, we'll explain further down). This is the best way to ensure that your
wins will stay around as new twiddlers and framework changes are
introduced.

Here is another way to look at the lower parts of the pyramid, as leaves
of a decision diagram:

mailto:superroot-team@google.com


7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 5/15

You will also need to decide whether your twiddler should run predoc or
lazily. Predoc twiddlers run on the full range of thin results, while lazy
twiddlers run on monotonically increasing ranges of fat results (which
have snippets and other docinfo data).

Your twiddler should run predoc if:

It modifies result IR scores.
It promotes results.
It performs RPCs to services such as TwiddlerServers, SSTables,
or FastMap.

Your twiddler should run lazily if:

It requires snippets or other docinfo.
It needs to see the outcome of predoc twiddlers actions.

IR-score modifying methods

There are several distinct flavors of reranking methods. The first flavor
is delicious score boosting, which we highly recommend. These
methods directly manipulate result IR scores.

Boost

Boost(Rank result, float boost) 

Use Boost when you have an IR-score based signal indicating that the
score of the document should be increased or decreased by a certain





7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 6/15

factor. The call instructs the framework to multiply the IR score of the
result by boost.

Example: YoutubeDensityTwiddler promotes channel results when
multiple video results from that channel are a good match for the query.

The framework combines all Boosts by multiplying them together.
Boost is the most widely used and oldest of the twiddler APIs. You can
think about it as the analogue of a score adjuster in Ascorer. If your
underlying signal is position-based, not score-based, then
BoostAboveResult may be a better choice.

BoostAboveResult

BoostAboveResult(Rank a, Rank b, float tie_breaker) 

Use BoostAboveResult when the underlying signal indicates that
result A should rank above (or around the position of) another result B.
The framework will compute an equivalent boost factor for you.

Example: YoutubeMovieTwiddler boosts movie results that a top
ranking entity to position 0.

The framework resolves all BoostAboveResult actions made on a
result by converting them to an equivalent multiplicative boost. As
opposed to calculating a Boost manually to achieve a similar effect,
BoostAboveResult has the following advantages:

The framework performs score interpolation for you, including
handling edge cases such as boosting to the first or last position,
and multiple results at the same position (that's what the
tie_breaker argument is for).
When multiple twiddlers use BoostAboveResult to promote or
demote the same result, the framework combines their actions as
follows:

If any call to BoostAboveResult would cause a ranking
promotion, the strongest promotion is chosen.
If all calls would result in a ranking demotion, the strongest
demotion is chosen.

The framework is also smart about the way it combines Boost and
BoostAboveResult actions to avoid double promotions or demotions.





7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 7/15

Here's a sketch of how it works:

For the full details, see: Design doc | Code

A useful guideline to choose between Boost and BoostAboveResult
is: If your signal could, in some possible scenario, move down to
Ascorer (because it can be expressed as a function of a single result,
perhaps with the addition of some aggregate information about all the
top results), then you should probably use Boost; otherwise, you
should probably use BoostAboveResult. Another useful guideline is
that if you routinely Boost by a factor of more than 5–10, there's a good
chance you're not doing it right.

Constraint methods

Constraint methods are piquant, and can be an acquired taste.

This large class of twiddler actions has no analogue in the one-result-
at-a-time Ascorer world: they constrain result positioning and limit the
number of results of a given type that are allowed in the final response.
Nearly all constraints are specified via categorization: a twiddler
creates a new category, with the desired constraints, and assigns one
or more results to that category. Using category constraints requires
two methods:

NewCategory

  const float boost_above_result = GetResolvedBoostAboveResult(result)

  float promotion = 1.0; 

  float demotion = 1.0; 

  for (float boost : GetAllBoosts(result)) { 

    if (boost > 1.0) { 

      promotion *= boost; 

    } else { 

      demotion *= boost; 

    } 

  } 

  const float combined_boost = 

      max(promotion, boost_above_result) * 

      min(demotion, boost_above_result); 



https://docs.google.com/a/google.com/document/d/1JLw_pHVs1Gpm7VZzgEVHr-4yv_dwfRQ6dkc4VU-1Brk/edit?usp=sharing
https://cs.corp.google.com/#google3/quality/twiddler/twiddle_applier.cc&type=cs&rcl=43930255&l=81


7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 8/15

NewCategory(const CategoryParams& params) 

Creates a new category with the given parameters.

Categorize

Categorize(Rank result, TwiddlerCategoryId id) 

Assigns a result to the category with the given id.

To create a category, a twiddler must first populate a CategoryParams
struct with the constraints it wishes to apply; all CategoryParams
constraints are initialized with no-op values, so only the fields of
interest need to be set. The twiddler must also set the id field in
CategoryParams, so that the category can be identified in subsequent
calls to Categorize. (Each Twiddler has its own id space, so there can
be no accidental use of the same category by two different twiddlers.)

Now, the twiddler can assign results to their category via Categorize.
The general pattern for applying a single category is as follows:

CategoryParams params; 

params.id = 1234; 

// Set desired fields in params. 

api->NewCategory(params); 

for (Rank rank = start; rank < end; ++rank) { 

  if (ShouldApplyCategory(rank)) { 

    api->Categorize(rank, 1234); 

  } 

} 

Category constraints

There are many types of category constraints, some more surprising
than others. Here is a selection of the ones we recommend. A detailed
list of all the category constraints can be found in
quality/twiddler/category_params.h, but please consult with
superroot-team@ before you try out ones that aren't on this list.

max_total







https://cs.corp.google.com/#google3/quality/twiddler/category_params.h
mailto:superroot-team@google.com


7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 9/15

max_total = N 

Prevents more than N results in a category being packed.

Example: BlogCategorizer places all the results from a blog in a
max_total category to prevent too many being shown. It also provides
an escape hatch via annotations, a framework feature we'll talk about
later. max_total constraints are enforced when results are being
packed into the final response: any max_total constraints applied by
predoc twiddlers is simply propagated through to final response
packing.

predoc_limit

predoc_limit = N 

Filters all but the first N results in a category at the end of predoc
twiddling.

Let's look at a pathological case of applying a max_total constraint of
1 to the first 100 results. Since max_total constraints are enforced
during final response packing, the twiddler framework will end up
having to fetch docinfo for all 100 results, even though only 1 can be
packed. To guard against this, a twiddler can add a predoc_limit
constraint to a max_total category.

Unlike most other category constraints, predoc_limits are enforced
after the results have been sorted at the end of predoc twiddling: the
first N results are kept and the rest are filtered, so the framework will
not fetch docinfo for them. The predoc_limit should chosen to be
somewhat larger than the corresponding max_total constraint, to
allow some slack for some results being filtered or reordered by other
twiddlers.

min_position

min_position = N 

Prevents results being packed earlier than the Nth rank (rank 0 is the
first result, rank 1 is the second, etc., so that min_position = 20
means below the 20th result).









7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 10/15

Example: BadURLsCategorizer adds a pseudo random (but
deterministic per-query) min_position constraint to results that are
marked for demotion, pushing them off the first couple of pages.

stride_step and stride_factor

stride_step = X 

stride_factor = Y 

Require a certain minimum spacing between consecutive results of the
same category.

The second result from the category is packed no less than X+Y
spaces after the first, the third no less than X+2Y after the second, the
fourth no less than X+3Y after the third, and so on.

Example: ImageHostCategorizer uses stride constraints to prevent
too many images from the same host being clustered together.

max_position

max_position = N 

Prevents results from being packed later than the Nth rank.

Example: OfficialPageTwiddler applies a max_position constraint
of 0 to the official page relating to a query when it has very high
confidence in its "officialness" signal.

max_position constraints should be used with care, since they will
override any demotions that another twiddler may wish to apply. Since
max_position constraints can promote results, they may only be
applied by predoc twiddlers, otherwise we would run into pagination
bugs.

Intermezzo: The category packing algorithm, stress, and
priorities

Constraints are enforced by the category packer (not to be confused
with the universal packer), the algorithm at the last stage of twiddling
that computes the final response. The number of results packed
depends on the user request:







7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 11/15

&num=10: pack 10 results.
&num=50: pack 50 results.
&start=20&num=10: pack 30 results (the universal packer will
discard the first 20).

The category packer first applies lazy twiddlers to a range of fat results;
it then puts these results into a priority queue and attempts to pack
them one-at-a-time into the response. The constraints are used to
determine the priority of results in the queue—the basic priority being
score order, then modified by the presence of min_position and stride
categories as more results from a category are packed.

You may be wondering what happens in cases where the result set is
overconstrained. The category packer maintains a concept of stress,
which roughly corresponds to how many results are stuck in the
pending queue waiting to be packed. As the stress increases, the
category packer begins to relax constraints, allowing results to be
packed. Categories can be assigned a priority value in the range [0, 1],
which controls the rigidity of their constraints.

SetRelativeOrder

SetRelativeOrder(Rank a, Rank b) 

Use the SetRelativeOrder method to specify that result A must be
packed above B if B appears in the packed response.

Example: YoutubeDuplicatesRemovalTwiddler uses
SetRelativeOrder to combat the problem of people uploading
multiple copies of the same video. It tries to identify the original video,
and reorders the results such that the original video ranks the highest
of all the duplicates.

SetRelativeOrder is another packing constraint, although it is a
TwiddlerAPI method, not a category type. Superficially similar to
BoostAboveResult, the constraint is actually much stronger and is
enforced during category packing, overriding other twiddlers' requests,
including max_position. It should be reserved for special
circumstances only. Since SetRelativeOrder can promote results, it
may only be called by predoc twiddlers, otherwise we would run into
pagination bugs.





7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 12/15

Result filtering methods

Filtering methods allow twiddlers to separate the wheat from the chaff.

Filter

Filter(Rank result) 

Filter logically removes a result from the response.

Example: EmptySnippetFilter filters results that have no snippet. If
your twiddler is attempting to perform de-duping operations, using a
max_total category constraint is normally a better choice. Filter
doesn't immediately remove results from the response, they are simply
marked as filtered.

Hide

Hide(Rank result, const MessageSet& annotation) 

Hide is a specialized method mostly used to implement legal removals.

Example: DMCAFilter hides results for which Google has received and
reviewed DMCA notices, and adds annotations later used by GWS to
show ChillingEffects links.

If we are obligated by law to censor a result that would otherwise have
shown, we want to be able to display a warning to our users. Filtering
too early would prevent the exact calculation of that event. Hidden
results flow through the twiddler framework untouched and are only
removed at the final stage of result packing.

Filtered

Filtered(Rank result) 

Calling Filtered with a result's rank will return true if that result was
filtered by a twiddler running in an earlier twiddling round.

It is recommended that lazy twiddlers check the Filtered state of
results, to avoid processing results that were filtered during predoc
twiddling. Additionally, twiddlers can use Filtered to see which results









7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 13/15

they themselves have removed, though because twiddlers run
concurrently, calls to Filtered will not reflect any Filter calls made
by other twiddlers running in the same round.

Annotating methods

And we now come to the annotating methods, those rich with the
elusive flavor-taste, umami.

These methods let twiddlers add protocol messages to the response or
to specific results. They are used to pass information up the stack, for
example to twiddlers running in later phases, the universal packer or to
GWS, to influence later ranking or UI decisions.

AnnotateResult

AnnotateResult(Rank, const MessageSet& annotation) 

Annotates a result with messages in the given MessageSet.

Example: SocialLikesAnnotator annotates social results with the
number of +1s they have received.

AnnotateResponse

AnnotateResponse(const MessageSet& annotation) 

Annotates the response with messages in the given MessageSet.

Example: SymptomSearchTwiddler annotates the response with
possible medical conditions and symptoms.

Debug methods

There are two methods that twiddlers can use to add debug information
to the result page.

AddDebug

AddDebug(Rank rank, const string& message) 









7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 14/15

Associates some unstructured debug data with the result at a particular
rank.

AddResponseDebug

AddResponseDebug(const string& message) 

Associates some unstructured debug data with the response.

Further topics

There are some things in the twiddler framework that we haven't
mentioned at all, but we hope that this brief introduction gives you a
place to start. Some of the major things we did not cover, and that you
can read about by following links in this document, or asking us, are:

Remote calls

Predoc twiddlers can make RPCs to FastMap, SSTables, or to
arbitrary remote code running in so-called TwiddleServers.

Multi-phase twiddling

There are in fact multiple rounds of predoc twiddling, with a
serialization point after each where all score modifications are
applied and results are reordered. Phases before the last are
intended for twiddlers affecting large fractions of the query stream
that would otherwise create too many interactions. Categorize
and SetRelativeOrder are not allowed in early phases.

Merge cluster categories

Essentially used for megasitelinks. We only mention them
because occasionally we've got questions from someone trying to
use them to obtain some strange ranking effect. If you think you
understand how they work, trust us: you don't. We're not sure that
we do either.

We hope that you got a flavor for what the twiddler framework can do
for you. You should now be able to guess what were the right APIs for
the two examples earlier on:





7/3/2018 Twiddler Quick Start Guide - Superroot

https://g3doc.corp.google.com/superroot/g3doc/user/howto/component_design/twiddlers/writing_twiddlers.md?cl=head 15/15

How to demote a result to the second page? A min_position category
is probably a good starting point.

How to promote a result when your signal only does pairwise
comparisons and says it's better than the current top? Use
BoostAboveResult. If your signal is very very high precision, consider
SetRelativeOrder as well, but ask first.

For further questions, we are available at superroot-team@.

Comments

Before you can create or read g3doc comments, you need to grant
g3doc access to Buganizer and Google people information. Learn more

Get access to g3doc comments

View all unresolved or resolved comments


...

mailto:superroot-team@google.com
https://goto.google.com/g3doc-comments
https://b.corp.google.com/issues?q=status%3Aopen%20componentid%3A132678%20comment%3A%22Comment%20created%20from%20g3doc.%22%20comment%3A%22URL%3A%20https%3A%2F%2Fg3doc.corp.google.com%2Fsuperroot%2Fg3doc%2Fuser%2Fhowto%2Fcomponent_design%2Ftwiddlers%2Fwriting_twiddlers.md%22
https://b.corp.google.com/issues?q=status%3Aclosed%20componentid%3A132678%20comment%3A%22Comment%20created%20from%20g3doc.%22%20comment%3A%22URL%3A%20https%3A%2F%2Fg3doc.corp.google.com%2Fsuperroot%2Fg3doc%2Fuser%2Fhowto%2Fcomponent_design%2Ftwiddlers%2Fwriting_twiddlers.md%22

