
RealtimeBoost Events - DesignDoc

last update:2017-03-08, first proposed: 2017-03-08

by: felipeg@google.com

Objective

A single place where we index and serve real world Events.

Background

Currently in production RealtimeBoostServlet runs in QRewrite detects spikes on news

documents published that match the SQuery (including syns). It does so by issuing one or

two RPCs to Realtime-Hivemind.

The RealtimeBoostResponse containing the Spike is sent down to Superroot in the QRewrite

response and it is currently used by a few Search features (such as TopStories) to trigger

faster and rank fresher documents for queries that are spiking for a given news event.

Goals

News in Search 2017 Goals

1. Consistency - When two similar queries have the same news intent, currently they

not necessarily bring the same user experience, they might not bring the same news

documents. For example, [Oroville Dam] and [California Flood] queries should lead

to the same use experience during the Oroville Dam crisis. See this slide for details.

2. Statefulness - When a user comes back to Search 2hs after he already read the

news for [Oroville Dam] we would like to show him only what’s new about it. See this

slide for details.

3. Semantic Understanding of the Event - When it happened, Where, Who is

involved, etc...

News 2.0 - Company OKR

Trystan, our Director, is leading a new effort called News2.0. This is a complete

rethinking of how google understands, index news and shows to the user.

mailto:felipeg@google.com
https://docs.google.com/presentation/d/12zsaVAuGMyeE2FOR2zrtmhD31iBQamwDdLYi4V0bdSI/edit?ts=58b9c45b#slide=id.g1b20e38f6d_20_52
https://docs.google.com/presentation/d/12zsaVAuGMyeE2FOR2zrtmhD31iBQamwDdLYi4V0bdSI/edit?ts=58b9c45b#slide=id.g1b1da3bc55_0_384
https://docs.google.com/presentation/d/12zsaVAuGMyeE2FOR2zrtmhD31iBQamwDdLYi4V0bdSI/edit?ts=58b9c45b#slide=id.g1b1da3bc55_0_384

News 2.0 will have similar concepts described above, Consistency and Statefulness is

at the core of the experience. See these slides for details.

News 2.0 is one of this year’s Company OKRs announced by Sundar in the
Q1 TGIF.

Solution: Database of News Events

RealtimeBoost team is building a “database” of News Events by clustering different queries

and spikes together. This is all updated and served in realtime.

That project + the Query Spikes will help detect the Query intent, pinpoint it to an specific

Event and bring the semantic understanding of the event:

● Salient Terms

● Entities

● Related Queries

● Questions-Answers

● Locations

● Summary

● Labels

● Pivots

● NavBoost Queries

● Chrome Visits

● It’s easy to add new dimensions such as related videos, or signals such as sentiment

analysis, etc...

The Query "Oroville Dam" and the query "California Flood" will lead to the same Story right

now if that’s what is the Breaking News to California right now.

The next day, when another flood happened in San Jose, the query "California Flood" should

lead to that story. Etc...

Statefulness - Update-me on what’s new

The Events database will also make possible to have Statefulness.

We can create snapshots of these Events and show to the user only the difference between

when the user came before and now. Imagine giving the user a Summary of what changed

for that Story.

Events - Cluster of Spikes

We cluster two spikes together if the cosine similarity of the related Salient-Terms and

related Entities set of the two reaches a certain threshold. The cosine similarity is calculated

https://docs.google.com/presentation/d/1izgSZfJss09tTftJ-aZsOeL5p0iextooXHahA9uG-F0/edit#slide=id.g1eab7897ed_0_0
https://drive.google.com/file/d/0B2GpLJyDTmjnTFdGeExLcVpneTA/view?t=802
https://drive.google.com/file/d/0B2GpLJyDTmjnTFdGeExLcVpneTA/view?t=802

weighted by the squashed Hivemind lift score of each token. We also require that the two

Spikes overlap in time.

This approach is different from Google News Clusters, since we are grouping Query-Spike

pairs based on the lift score of tokens from documents that these spikes matches. Google

News Clusters uses an outdated notion of centroid unigrams of articles to cluster them

purely based on the article content (centroid tokens).

Given said that, we are planning to use Google News Clusters as a signal to help building

our own clusters and Google News folks (Martin Law and Maricia) are talking with us about

merging the two algorithms.

This approach is already working on a demo that you can see here:

go/realtime-boost-prod/firehose

Real Example:

These query-spikes were grouped together because they are talking about the same news

event: OJ Simpson is about to be release from prison in parole.

The reason they were grouped together is because the related Salient-Terms and Entities

were very similar:

http://go/realtime-boost-prod/firehose

By grouping these spikes together we can build a better understanding of the news, with

the queries that are spiking. We can aggregate the related Entities, Salient-Terms, and all

other dimensions related to each spike.

The Clusters can track all documents about that same event and we can have “snapshots”

of each Cluster to track differences on the evolution of the news (to show to the user only

updates).

Code Location

Currently the code is implemented in the RealtimeBoost directory.
The two most important files are these two:

https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/ui/spike_aggregator.cc

https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/ui/common_util.cc

ModelT Serving Cluster of Spikes

After building these clusters we store in a muppet-instant using ModelT.

This ModelT will be queried by Supperroot and News 2.0 clients.

This document describes the Requirements and Scale for that Muppet instance.

This document has the implementation details for the first incarnation of our Muppet

instance (ModelT).

Current state: We have a ModelT instance indexing a sub-sample of Spikes and Clusters.

We are in the process of requesting capacity to increase the indexing and being able to

serve to Superroot traffic.

ModelT Search

We can search/match/rank clusters on many different ways.

https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/
https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/ui/spike_aggregator.cc
https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/ui/common_util.cc
https://docs.google.com/document/d/1_WurNMsN_pcBjHtsp7XVrZXMRMif6YHL2bZqghm2-6Y/edit#
https://docs.google.com/document/d/1-kB6a4yYNn1PTWknOhLaDuChgcjrBth8Y0yjEeb4-j4/edit#
https://docs.google.com/document/d/1-kB6a4yYNn1PTWknOhLaDuChgcjrBth8Y0yjEeb4-j4/edit#

Refer to this doc for the full details on how the scoring was implemented.

Search by Cosine similarity of Spike

One way is to send a Spike as a query and match by cosine similarity of the Entities

and Salient Terms. This is already implemented and works.

This is a powerful tool to discover the most similar Clusters based on a query that

has a recent spike.

Search by Weighted set of Entities -- Or any other dimension

(Location, DocIDs, Locale, Domain, etc…)

In a similar way, we can use a group of entities (with weights) and do a cosine

similarity only on the entities.

Search by SQuery

We can search by regular SQuery, including receiving a big list of entities with OR.

ModelT Document Format

We store an attached proto with the aggregated version of the Cluster (not the individual

spikes). We calculate it by running the liftscore again using all the Salient Terms from all the

Spikes within the same Cluster. We do the same thing again for all related dimensions.

The code to calculate it is here.

The document can be indexed with the top salient terms, top queries and top entities as

document tokens so the regular SQuery can match these terms. See field “content”.

message RealtimeBoostEventDocument {

 // Stored event. Required.

 optional RealtimeBoostEvent event = 1

 [(indexing.moonshine.generic.field_spec) = {stored: true}];

 // Tokens from event.result_group().result().related_dimension_result(ENTITY),

 // event.result_group().result().related_dimension_result(SALIENT_TERMS),

 // and event.result_group().query().query().

 // This field will be tokenized using structuredsearch::HtmlTokenizer. See

 // document http://g3doc/indexing/moonshine/generic/g3doc/doc/search\
 // _api.md?cl=head#text-fields.

 // The tokens are for optional match during retrieval.

 optional string content = 2 [(indexing.moonshine.generic.field_spec) = {

 match_within_field: true

 match_globally: true

 string_options{tokenization_mode: TEXT}

https://docs.google.com/document/d/1-kB6a4yYNn1PTWknOhLaDuChgcjrBth8Y0yjEeb4-j4/edit#heading=h.hqwv2u3s6tv5
https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/ui/spike_aggregator.cc
https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/proto/realtime_boost_firehose.proto?l=78&gs=proto%253Atype-quality_realtime.boost.RealtimeBoostEventDocument%2540google3%252Fquality%252Frealtime%252Fboost%252Fproto%252Frealtime_boost_firehose.proto&gsn=RealtimeBoostEventDocument&ct=xref_usages
https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/proto/realtime_boost_firehose.proto?l=78&gs=proto%253Atype-quality_realtime.boost.RealtimeBoostEventDocument%2540google3%252Fquality%252Frealtime%252Fboost%252Fproto%252Frealtime_boost_firehose.proto&gsn=RealtimeBoostEventDocument&ct=xref_usages
https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/proto/realtime_boost_firehose.proto?l=60&ct=xref_jump_to_def&gsn=RealtimeBoostEvent&rcl=149373333
https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/proto/realtime_boost_firehose.proto?l=60&ct=xref_jump_to_def&gsn=RealtimeBoostEvent&rcl=149373333
https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/proto/realtime_boost_firehose.proto?l=80&gs=proto%253Afield-quality_realtime.boost.RealtimeBoostEventDocument.event%2540google3%252Fquality%252Frealtime%252Fboost%252Fproto%252Frealtime_boost_firehose.proto&gsn=event&ct=xref_usages
https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/proto/realtime_boost_firehose.proto?l=80&gs=proto%253Afield-quality_realtime.boost.RealtimeBoostEventDocument.event%2540google3%252Fquality%252Frealtime%252Fboost%252Fproto%252Frealtime_boost_firehose.proto&gsn=event&ct=xref_usages
http://g3doc/indexing/moonshine/generic/g3doc/doc/search
http://g3doc/indexing/moonshine/generic/g3doc/doc/search
https://cs.corp.google.com/piper///depot/google3/quality/realtime/boost/proto/realtime_boost_firehose.proto?l=100&gs=proto%253Afield-quality_realtime.boost.RealtimeBoostEventDocument.related_items%2540google3%252Fquality%252Frealtime%252Fboost%252Fproto%252Frealtime_boost_firehose.proto&gsn=related_items&ct=xref_usages

 }];

 ...

ModelT Serving and Google News Clusters

Our ModelT infrastructure can be used to serve even the regular Google News Clusters. If

we don’t merge two algorithms (RTBoost Spike Cluster with Google News Clusters), we can

still use the ModelT infrastructure to Search and Serve News Clusters -- But it's unclear this

is necessary given that News Cluster Id is already annotated in all documents and can be

served via the normal WebMain muppet instance.

Events Timeline

The power of matching by cosine similarity of the related Salient-Terms and Entities for any

given Spike can be used to bring all the Clusters related to a recent Spike/Event.

If we don’t restrict by time and lower the threshold for similarity we can bring all Clusters

related to California and Flood, even the ones not related to the Oroville Dam, and

thus, we can build a timeline of California Floods.

Then client can sort it and use it anyway it wants.

Pubsub of Spikes in Realtime

In order to build these Clusters we need to discover the query-spike pairs in realtime.

Alternative Considered (demo)

The way we currently implemented the demo is by randomly sampling GWS logs and

InstantNavboost queries and issuing the query to Hivemind. This has many problems. The

first one is obvious, we are issuing the query to Hivemind again, when we already had done

that in QRewrite. The second problem is the intrinsic delay in the GWS logs generation and

sampling. We won’t see the most fresh queries that just started trending.

Proposal using Pubsub from QRewrite

My proposal is to simply publish in a pubsub the RealtimeBoostResponse generated in

QRewrite only for a sub-sample of queries that are trending (less than 0.5% of all queries).

ONLY FOR NON LOGGED IN USERS.

RealtimeBoostServlet in QRewrite already sends an RPC to Hivemind to detect the spike. We

we can simply send the RealtimeBoostResponse into a Pubsub.

Another Alternative Considered: Publish to Pubsub from Superroot

Superrot receives the QRewrite response which contains the RealtimeBoostResponse. We

could implement a graph builder in PUM (Pre-Universal-Mixer), or before that, which

captures the QRewrite response and publishes the RealtimeBoostResponse to a pubsub.

This option has no advantages from the above proposal, and we will have to introduce new

code and implement a new graph builder in Superroot just for doing that. QRewrite already

runs our code (our servlet) and seems like a natural place to publish it.

We don’t currently have any code that runs for every query in Superroot (only the clients

such as Stream/TopStories have it).

Privacy

If we publish only queries from non-logged in users, and only queries that are spiking, we

guarantee that no PII data is published in that pubsub for 3 reasons:

1. In order for a query to be spiking, it needs to match at least 10 news documents

published on 5 or more different domains (news outlets). The docs have to match

the whole query (syns are allowed).

2. We limit the query word length to 5 so we limit the possibility of long-tail and unique

queries.

3. Only non-logged in queries will be used.

QRewrite Pubsub Requirements and Scale

The average QPS of all queries that are trending/have a spike is about 1.5KQPS (for whole

world traffic) with short peaks of up to 5KQPS. http://shortn/_KPJzOq7Urb

The average size of a message published is 10Kb, so total is 50MB/s on the peak which is

the max for the freebie quota from pubsub.

We can subsample that to much less if needed and only publish an small portion of the

trending queries.

The call to pubsub publish in QRewrite can be async in a fire-and-forget manner, so it won't

impact latency. Pubsub will also not interfere (not block) in case we are publishing too many

messages per second, we can simply drop messages (or subsample).

Latency impact: None

The call to pubsub Publish in QRewrite can be async in a fire-and-forget manner, so it won't

impact latency. Pubsub will also not interfere (not block) in case we are publishing too many

messages per second, we can simply drop messages (or subsample), see below.

http://shortn/_KPJzOq7Urb

Memory impact: None

If we drop the messages when Pubsub publish is throttling us, we won’t affect memory.

See this pubsub doc. We can detect that the publish is being throttled by calling

GetTotalPending() and we can decide to not call Publish and drop the messages.

CPU impact: Probably negligible

Pubsub publish doesn’t take much CPU.

Network impact: 50MB/s added for whole world

Dividing by 15 Datacenters (where qrewrite.web runs), 3.3MB/s per datacenter

Clusterizer Binary

We currently run a single-instance, in-memory, custom binary that listens to the pubsub of

Spikes and cluster them together. We can have multiple instances sharded by locales.

The current demo instance only keeps the last 24 hours of spikes. The memory usage is

about 5GB, but there are many improvements we can make to improve it. The current

implementation uses a few in-memory data structures to make it extremely efficient for CPU

(not necessarily efficient for memory).

There is no need to keep really old clusters in memory, since we require that the new spike

time overlaps with the cluster time, and we only listen to new spikes.

We need to add a BigTable (in-memory + disk) to keep the complete data for the Clusters

in case the Clusterizer dies, it needs to restart from the previous state. The BitTable, in

conjunction with a master election algorithm can allow us to smoothly handle PCRs, and run

the same binary in multiple cells (but one cell being the master).

This custom binary allows us to implement and test really fast.

Clusterization Algorithm

The current algorithm is greedy:

1. For a new Spike, if there is an existing Cluster that is similar and have an overlap in

time with the new Spike, we add it to that Cluster.

2. If not, we create a new cluster (initially with a single spike).

https://g3doc.corp.google.com/ipc/pubsub2/g3doc/user_guide/throttling.md?cl=head#what-happens-to-my-messages-when-my-client-gets-throttled
https://cs.corp.google.com/piper///depot/google3/ipc/pubsub2/public/publisher.h?l=249&gs=cpp%253Apubsub2%253A%253Aclass-Publisher%253A%253AGetTotalPending()-const%2540google3%252Fipc%252Fpubsub2%252Fpublic%252Fpublisher.h%257Cdecl&gsn=GetTotalPending&ct=xref_usages

Hierarchical Cluster

By using the same Cosine similarity and time-overlap function, we can easily implement a

hierarchical clustering algorithm, even using some pre-existing google3 libraries such as this

one.

Cluster Stability

Stability is desirable for the clients to be able to implement Statefulness and Consistent user

experiences.

The current greedy implementation is by definition stable, since we never split or merge

clusters.

Also the Spike timespan restriction make it unlikely that the cluster would need to split

(even if we implemented it), since spikes capture a very fine granularity of events.

But even if we use Hierarchical Cluster we would like to keep the clusters stable by giving

the client back the cluster always at the same level of hierarchy. But we need to think about

the merge and split cases (if we ever implement it).

Long Running Cluster

The RealtimeBoost Spikes are, by nature, short lived. They have an specific time when the

breaking news started and finished, usually not longer than 5 hours.

For long running events such as Superbowl, the spikes will capture the sub-events inside

that big event.

We need to design an algorithm to capture all the small spikes that are related to the same

big event. One idea described above is to build a timeline based on the cosine similarity

between clusters/spikes that don’t overlap in time. For example capture all the clusters that

have Superbowl as their main entity/salient term even though they are all spread across a

month (as opposed to a few hours).

I expect that Google News Clusters can help with this kind of long running clusters.

I hope Martin and Alex will be able to help here.

Whatever algorithm we devise to capture this long running cluster, we can use the ModelT

data to process and re-index the clusters. For example: search for all sub-events (small

clusters) and group them together into a bigger cluster. We then re-index the bigger cluster

as a new kind of document in Muppet that we can query with some special restrict-token.

This way we can query Muppet to get the big-event or the sub-events for a given big-event,

etc...

https://cs.corp.google.com/piper///depot/google3/util/clustering/hac/
https://cs.corp.google.com/piper///depot/google3/util/clustering/hac/

Single Document

When a single good document is published far away from the event that it refers to, we

need to find a way to connect that document to the cluster.

Think about a NYTimes editorial analysis of some important event that happened past

week…

We might try using the similarity of Doc Salient Terms to search for clusters, and/or use

News Clusters.

These documents will stay in the regular Muppet and will be retrieved and ranked the same

way we currently do with the FCS/Stream ranking. The Cluster association can be done in

Goldmine with an Annotator or using Raffia Signals pipeline.

Design Overview

