Seeds of Change

Root causes of algorithmic unfairness, and a path forward

go/seeds-of-change

mmitchellai@ Google Confidential

A quick recap

Training data are collected and annotated

Model is trained and evaluated Media are filtered, ranked, aggregated, or generated

Input

Training data are collected and annotated

Model is trained and evaluated Media are filtered, ranked, aggregated, or generated

Input

Training data are collected and annotated

Model is trained and evaluated

Media are filtered, ranked, aggregated, or generated

Input

Training data are collected and annotated

Model is trained and evaluated Media are filtered, ranked, aggregated, or generated

Input

At a high level, where is unfairness creeping in?

Within the data

Reporting bias Selection bias Overgeneralization bias Out-group homogeneity bias Stereotypical bias Historical Unfairness Implicit associations Implicit stereotypes Prejudice Group Attribution error Halo effect

Within the data

Reporting bias Selection bias Overgeneralization bias Out-group homogeneity bias Stereotypical bias Historical Unfairness Implicit associations Implicit stereotypes Prejudice Group Attribution error Halo effect

Data collection and annotation

Sampling error Non-sampling error Insensitivity to sample size Correspondence bias In-group bias Bias blind spot Confirmation bias Subjective validation Experimenter's bias Choice-supportive bias Neglect of probability Anecdotal fallacy Illusion of validity Automation bias

Within the data

Reporting bias Selection bias Overgeneralization bias Out-group homogeneity bias Stereotypical bias Historical Unfairness Implicit associations Implicit stereotypes Prejudice Group Attribution error Halo effect

Data collection and annotation

Sampling error Non-sampling error Insensitivity to sample size Correspondence bias In-group bias Bias blind spot Confirmation bias Subjective validation Experimenter's bias Choice-supportive bias Neglect of probability Anecdotal fallacy Illusion of validity Automation bias

Training and evaluation

Evaluation metric Features Objective Function Model architecture Variables Tasks Hyperparameters

Within the data

Reporting bias Selection bias Overgeneralization bias Out-group homogeneity bias Stereotypical bias Historical Unfairness Implicit associations Implicit stereotypes Prejudice Group Attribution error Halo effect

Data collection and annotation

Sampling error Non-sampling error Insensitivity to sample size Correspondence bias In-group bias Bias blind spot Confirmation bias Subjective validation Experimenter's bias Choice-supportive bias Neglect of probability Anecdotal fallacy Illusion of validity Automation bias

Training and evaluation

Evaluation metric Features Objective Function Model architecture Variables Tasks Hyperparameters

We use data to estimate how likely different things are

Stereotypical bias

A man and his son are in a terrible accident and are rushed to the hospital in critical care.

The doctor looks at the boy and exclaims "I can't operate on this boy, he's my son!"

How could this be?

A man and his son are in a terrible accident and are rushed to the hospital in critical care.

The doctor looks at the boy and exclaims "I can't operate on this boy, he's my son!"

How could this be?

A man and his son are in a terrible accident and are rushed to the hospital in critical care.

The doctor looks at the boy and exclaims "I can't operate on this boy, he's my son!"

How could this be?

"Female doctor"

"Doctor"

"Female doctor"

The majority of test subjects overlooked the possibility that the doctor is a she—including men, women, and self-described feminists.

Wapman & Belle, Boston University

Reporting bias

Google	"male surgeon"							۹
	All	Images	Videos	News	Shopping	More	Settings	Tools
	About 89,800 results (0.28 seconds)							

Google	"female surgeon"						ا پ م
	All	Images	Videos	News	Shopping	More	Settings Tools
	About	t 199,000 res	ults (0.53 se	conds)			

Statistics on the Number of Women Surgeons in the United States

World learning from text

Gordon and Van Durme, 2013

Word	Frequency in corpus
"spoke"	11,577,917
"laughed"	3,904,519
"murdered"	2,834,529
"inhaled"	984,613
"breathed"	725,034
"hugged"	610,040
"blinked"	390,692
"exhale"	168,985

World learning from text

Gordon and Van Durme, 2013

Word	Frequency in corpus
"spoke"	11,577,917
"laughed"	3,904,519
"murdered"	2,834,529
"inhaled"	984,613
"breathed"	725,034
"hugged"	610,040
"blinked"	390,692
"exhale"	168,985

Top results show historical unfairness, implicit associations, and implicit stereotypes reflected in Reporting Bias We tend to mention and share things that are outside of our expectation of day-to-day norms; ignoring the things that "go without saying". Training data are collected and annotated

Media are filtered, ranked, aggregated, or generated

Men Women

SOURCE

Johnson, Heather L. 2016. Pipelines, Pathways, and Institutional Leadership: An Update on the Status of Women in Higher Education. Washington, DC: American Council on Education

SOURCE

Johnson, Heather L. 2016. Pipelines, Pathways, and Institutional Leadership: An Update on the Status of Women in Higher Education. Washington, DC: American Council on Education

Training data are collected and annotated

Model is trained and evaluated

Media are filtered, ranked, aggregated, or generated **INSIGHT: EVALUATION METRIC**

The Confusion Matrix

Evaluation Metric Insights: The Confusion Matrix

Predictions

Evaluation Metric Insights: The Confusion Matrix

Predictions

Create for each (subgroup, prediction) pair. Compare across subgroups.

Evaluation Metric Insights: The Confusion Matrix

Predictions

Create for each (subgroup, prediction) pair. Compare across subgroups.

Example: women, face detection men, face detection
		Predictions		
		Positive	Negative	
References	Positive			
	Negative			

		Predictions		
		Positive	Negative	
References	Positive	Reference says something exists Model <mark>predicts</mark> it True Positives	Reference says something exists Model doesn't predict it False Negatives Type II Error	
	Negative	Reference says something doesn't exist Model <mark>predicts</mark> it False Positives <i>Type I error</i>	Reference says something doesn't exist Model <mark>doesn't predict</mark> it True Negatives	

		Predictions		
		Positive	Negative	
suces	Positive	Reference says something exists Model <mark>predicts</mark> it True Positives	Reference says something exists Model doesn't predict it False Negatives Type II Error	
References	Negative	Reference says something doesn't exist Model <mark>predicts</mark> it False Positives <i>Type I error</i>	Reference says something doesn't exist Model <mark>doesn't predict</mark> it True Negatives	

The Problem Areas

	Predictions			
		Positive	Negative	Calculate
ences	Reference says something exists Model predicts it True Positives		Reference says something exists Model doesn't predict it False Negatives Type II Error	True Positive Rate/ Sensitivity/ Recall False Negative Rate/ Miss Rate
Reference	Negative	Reference says something doesn't exist Model predicts it False Positives Type I error	Reference says something doesn't exist Model <mark>doesn't predict</mark> it True Negatives	False Positive Rate/ Fallout True Negative Rate/ Specificity
		Precision / Positive Predictive Value, False Discovery Rate	Negative Predictive Value, False Omission Rate	LR+, LR-

		Predie		
		Positive	Negative	Calculate
	tive	Reference says something exists Model predicts it	Reference says something exists Model doesn't predict it	True Positive Rate/ Sensitivity/ Recall
References	Positive	True Positives	False Negatives Type II Error	False Negative Rate/ Miss Rate
lefer	tive	Reference says something doesn't exist Model predicts it	Reference says something doesn't exist Model doesn't predict it	False Positive Rate/ Fallout
2	Negative	False Positives <i>Type I error</i>	True Negatives	

		Predi		
		Positive	Negative	Calculate
	tive	Reference says something exists Model predicts it	Reference says something exists Model doesn't predict it	
References ative Positive		True Positives	False Negatives Type II Error	
Refer	tive	Reference says something doesn't exist Model predicts it	Reference says something doesn't exist Model doesn't predict it	
	Negative	False Positives Type I error	True Negatives	
		Precision / Positive Predictive Value, False Discovery Rate	Negative Predictive Value, False Omission Rate	

Evaluation Metric: Error trade-offs

False Positive

(Type I error)

False Negative

(Type II Error)

Real World Example:

 Project working with clinicians for mental health

- Project working with clinicians for mental health
- Trying to detect suicide risk

- Project working with clinicians for mental health
- Trying to detect suicide risk
- For patient trust (and sanity), important not to have False Positives

- Project working with clinicians for mental health
- Trying to detect suicide risk
- For patient trust (and sanity), important not to have False Positives
 - Predicting suicide risk when there is not a risk

- Project working with clinicians for mental health
- Trying to detect suicide risk
- For patient trust (and sanity), important not to have False Positives
 - Predicting suicide risk when there is not a risk
- Prioritize True Positive Rate at a low False Positive Rate

Choose your evaluation metrics in light of acceptable tradeoffs between False Positives and False Negatives. **TOOL: EVALUATION METRICS**

Lantern: Guided Model Analysis

Model Evaluation

Data slicing

Better Understanding of Disproportionate Outcomes

go/lantern-eval-colab

0.44190

1.43942

0.54254

0.00000

0.53122

1.22211

0.99575

0.42488

0.81734

0.54768

0.86115

0.45257

0.74769

0.82322

0.81346

0.00000

0.82715

0.85802

0.89145

0.47113

0.83589

0.00000

0.92702

0.57256

0.32741

0.22960

0.30197

0.22628

0.39011

0.23249

0.36220

0.26211 0.47567

0.37001

0.00000

0.48687

0.28229

0.92000

0.84701

0.00000

0.93919

0.22549

0.18090

0.23670

0.00000

0.32861

0.57813 0.18673 0.81937 0.96799

0.41162 0.94393

0.94634

0.83754 0.96216

0.55136

0.96078 0.96078

0.49132 0.94118

education:Doctorate

education:HS-grad

education:Masters

education:Preschool

education:Prof-school

education:Some-college

413

10501

1723

51

576

7291

0.74092

0.15951

0.55659

0.00000

0.73438

0.19023

INSIGHT: FEATURES

Word embeddings

Word embeddings represent each word as a vector.

Word embeddings represent each word as a vector.

Allows us to calculate similarity between words.

Word embeddings represent each word as a vector.

Similarities between embeddings can be found using cosine distance:

Word embeddings represent each word as a vector.

Similarities between embeddings can be found using cosine distance.

Similarities between the **difference** between vectors can also be calculated using cosine distance.

$\rightarrow \rightarrow \rightarrow$		$\rightarrow \rightarrow$
g = man - woman	$\rightarrow \rightarrow$	g • r
$\rightarrow \rightarrow \rightarrow$	cos(g, r) =	
r = king - queen	cos(g, r) -	\rightarrow \rightarrow
		g • r

Word embeddings represent each word as a vector.

Similarities between embeddings can be found using cosine distance.

Similarities between the difference between vectors can also be calculated using cosine distance.

This can show us roughly equivalent relationships between words.

Word embeddings represent each word as a vector.

Similarities between embeddings can be found using cosine distance.

Similarities between the difference between vectors can also be calculated using cosine distance.

This can show us roughly equivalent relationships between words ... including unfairness.

man - woman ≈ computer programmer - homemaker

Potential Solution: Debias your embeddings

High-Level:

- 1. Calculate the representation of a concept, like "gender", using word embeddings.
- 2. Subtract this representation from learned word embeddings.
- 3. Use a hyperparameter to define how much this subtraction effects the embedding.

TECHNIQUE: EMBEDDINGS

Embeddings with Tensorflow

Embeddings reveal words used in similar contexts within your dataset.

go/tf-embedding-colab

Id	L2 Distance †	L2 Norm	Adjust	Word
2000	0.000000	1.000000	Remove	teacher
1736	0.707160	1.000000	Add	teachers
44702	0.732374	1.000000	Add	guidance counselor
6229	0.740699	1.000000	Add	<u>elementary</u>
105512	0.791613	1.000000	Add	paraprofessional
371401	0.795801	1.000000	Add	paraeducator
13229	0.798513	1.000000	Add	Teacher
931	0.829719	1.000000	Add	student
198	0.833520	1.000000	Add	school
4825	0.837015	1.000000	Add	<u>classroom</u>

<u>https://g3doc.corp.google.com/</u> engedu/ml/mldays/g3doc/embeddings_demo.md

Embeddings Demo

THE JOURNEY CONTINUES

Fairness-Relevant Tools

Google-internal

<u>go/mlx</u> □	Suite of tools useful for different aspects of fairness/bias. Some key tools also listed below.
go/tfx □ Codelab	Computes statistics over data for visualization and example validation; anomaly detection; etc.
go/mlx tools	Great list of tools to help visualize different aspects of your model.
go/mlx-lantern □ Codelab	Computes evaluation metrics and loss for slices of your data with visualization. Interested in adding further support relevant to fairness in particular. Use with <u>go/tfx</u> or <u>Sibyl</u> .
go/ml-dash	Compare metrics; visualize loss over time; etc.
go/wide-n-deep	Combine the benefits of wide models and deep models (deep learning).
go/multitask	Support multitask (multi-headed) learning. Predicting several tasks at once can be useful for the tasks to mutually benefit one another.
go/glassbox	Interpretable machine learning.
<u>go/bias</u>	Report biased Google products.

Google-internal

Embedding Projector	View how different strings of text pattern with other strings in a high-dimensional space.
go/mledu-in-embeddings 🖉	View word relationships in embedding space.
Rank Lab □ Recipes & Best Practices	Supports feature ablation experiments, shuffling.
Fast Feature Ablation	Fast Feature Ablation (FFA) adapts the feature ablation process cpop/jpg developed for SmartASS to an implementation suitable for Tensorflow and TF.Learn specifically.
<u>Chain</u> <u>Codelab</u>	Provides easy handling for moving from detection to evaluation. Includes a face attribute client: Age/Gender/UHS estimates (common in semantic scene understanding).
Affective Computing	Label images for affective states, emotions, etc.
VSEval 💷 Codelab	Flexible infrastructure to acquire, store, and share high-quality ground truth, as well as by offering insightful statistics and visualization tools to support such research.
Learning Arbiter 🔲 Codelab	The Arbiter Perception Eval system is in development! It aims to be a modular service oriented ecosystem built to ease up the evaluation of machine perception models.

Thanks!

<u>dsculley@</u> <u>mmitchellai@</u>

ML Fairness

Machine Learning, Subgroup Discovery

go/ml-fairness-tools go/ml-fairness-metrics

References

Benton, Adrian; Mitchell, Margaret; Hovy, Dirk (2017). "Multi-task learning for Mental Health Conditions with Limited Social Media Data". Proceedings of EACL.

Bolukbasi, Tolga; Chang, Kai-Wei; Zou, James; Saligrama, Venkatesh; Kalai, Adam (2016). "Man is to Computer Programmer as Woman is to Homemaker?: Debiasing Word Embeddings". Proceedings of NIPS.

Gordon, Jonathan; Van Durme, Benjamin (2013). "Reporting Bias and Knowledge Acquisition". Proceedings of the 2013 workshop on Automated knowledge base construction.

Kay, Matthew; Matuszek, Cynthia; Munson, Sean A. (2015). "Unequal Representation and Gender Stereotypes in Image Search Results for Occupations". Proceedings of CHI.

Misra, Ishan; Girshick, Ross; Mitchell, Margaret; Zitnick, Larry (2016). "Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels". Proceedings of CVPR.

Wapman, Mikaela; Belle, Deborah (2014). "A Riddle Reveals Depth of Gender Bias". Boston University. As reported by Barlow, Rich. BU Today. https://www.bu.edu/today/2014/bu-research-riddle-reveals-the-depth-of-gender-bias/

KDD Tutorial: <u>http://francescobonchi.com/algorithmic_bias_tutorial.html</u>
THE JOURNEY CONTINUES

Additional Slides

INSIGHT: TASKS

Leverage multiple tasks to improve performance across different subgroups

go/tf-multitask

Motivation from "The Karate Kid"

Single-task Learners (STL)

Multitask Learner (MTL)

Single-Task: Logistic Regression

Multiple Tasks with Basic Logistic Regression

Multiple Tasks + Deep Learning: Multi-task Learning

Multiple Tasks + Deep Learning: Multi-task Learning Example

Benton, Mitchell, Hovy. 2017. "Multi-task learning for Mental Health Conditions with Limited Social Media Data"

Multiple Tasks + Deep Learning: Multi-task Learning Example

Benton, Mitchell, Hovy. 2017. "Multi-task learning for Mental Health Conditions with Limited Social Media Data'

Improved Performance across Subgroups

<u>Benton, Mitchell, Hovy. 2017. "Multi-task learning for Mental Health Conditions with Limited Social Media Data"</u>

Improved Performance across Subgroups

Benton, Mitchell, Hovy. 2017. "Multi-task learning for Mental Health Conditions with Limited Social Media Data"

Lantern: Guided Model Analysis, including Multi-Task!

Includes offline model evaluations, computation of metrics on different slices of the data

feature	auc	aupro	averageLabel	averageRefinedPrediction	binaryConfus	ionMatricesFr	omRegression	_
age:19	0.66929	0.70809	0.55309	0.55243	F1 Score	Threshol Precision	d: 0.75000 Recall	Accuracy
					0.40000	0.10000	0.30000	0.20000
age:18	0.68247	0.73486	0.62338	0.46560	0.41000	0.11000	0.31000	0.21000
age:20	0.66872	0.70736	0.55309	0.56765	0.43000	0.13000	0.33000	0.23000
age:22	0.71525	0.77450	0.62338	0.46510	0.44000	0.14000	0.34000	0.24000

<u>go/mlx-lantern</u>

Source Document for Multi-Task Models

INSIGHT: OBJECTIVE FUNCTION

Visual presence + Relevance

Data data everywhere ...

100 hours of video every minute

#dog #hungry

OMG Frodo is sitting eating pizza and donuts.

dog, chair, pizza, donut

dog, chair, pizza, donut

Data data everywhere ... But not many labels to train

Exhaustively annotated data is expensive

dog, chair, pizza, donut

dog, chihuahua, brown, chair, table, wall, space heater, pizza, greasy, donut 1, donut 2, pizza slice 1, pizza slice 2...

Simple Image Classification

"Gold standard" Annotation: Human-biased label $y^w \in \{0, 1\}$

Prediction $h^w(y^w|I)$

• A human-biased prediction h can be factored into two terms

A human-biased prediction h can be factored into two terms
Visual presence v – Is the concept visually present?

w ∈ {banana, yellow} ✓

• A human-biased prediction h can be factored into two terms

- Visual presence v Is the concept visually present?
- Relevance r Is the concept relevant for a human?

 $w \in \{banana, yellow\} \times$

• A human-biased prediction h can be factored into two terms

- Visual presence v Is the concept visually present?
- Relevance r Is the concept relevant for a human?

$$h = f(r, v)$$

• A human-biased prediction h can be factored into two terms

- Visual presence v Is the concept visually present?
- Relevance r Is the concept relevant for a human?

Given visual presence, is concept relevant? Is concept present? $h(y|I) = \sum_{j \in \{0,1\}} r(y|z=j,I)v(z=j|I)$

	Label	Prediction
Visually correct ground truth (Unknown)	\mathcal{Z}	v
Available ground truth (human-biased)	y	h

End-to-End Approach

Marginalize:
$$h(y|I) = \sum_{j \in \{0,1\}} r(y|z=j,I) v(z=j|I)$$

SOURCE

Misra, Ishan; Girshick, Ross; Mitchell, Margaret; Zitnick, Larry (2016). "Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels". Proceedings of CVPR.

"<u>Male</u> doctor"

"Female doctor"

Thanks!

mmitchellai@

ML Fairness

Machine Learning, Subgroup Discovery

go/ml-fairness-tools go/ml-fairness-metrics

