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Audience

The intended audience for this doc is anyone who is interested in making the systems they work
on more fair. This includes SWEs, PMs, policy folks, etc.

It is developed specifically in light of the machine learning fairness issues for people working
with machine learning.

This document serves to describe the “ML” part of ML Fairness, helping to inform policy and
preferred methods.

Background and Goal

Multiple projects in Google consider the role that “bias” plays in our technology.
The term “bias” in machine learning refers to many things. In this document, we focus on tools
and metrics for algorithmic fairness.

From a machine learning perspective, there are a few ways to identify fairness:

1. Specifically for subgroups in the data (see Subgroups doc), measuring output on those
subgroups using automatic evaluation metrics such as those available from the
confusion matrix.

Slice Finding, where particularly error-prone regions of your dataset are presented.

3. Active Learning, where the system tells you the training instances that it's struggling
with the most, and you help it out.

4. Manually viewing and analyzing reported failures, reproducing those errors in data
collected, and adding them to relevant evaluation subsets.

5. Thinking of possible biased failures, stress-testing them, and then hand-tweaking the
model to handle those cases.

N

This document focuses on the first case, 1, while also calling out cases where 3, active learning,
would be beneficial as well.

We break the problem down into a few parts:
1. Data (collection, annotation, processing)


https://docs.google.com/document/d/1GaTOMWUTRZpiHWrTvxEyz6IVlJLR3V26XCYKmYrbk5A/edit#bookmark=id.b837v5261h49
http://go/ml-fairness-subgroups
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2. Evaluation (what to measure and why)

3. Modeling (what is the machine learning modelling, and what is it not)

a. Architecture

b. Hyperparameters
c. Features
d. Variables
e. Objective Function

In all of the above, systems with unfairness in them stem in part from the following issues:?

Causes of Unfairness from “the world” that
we might reflect in our projects when using
some of the world’s data.

Causes of Unfairness in our procedures that

we might reflect in our projects.

Implicit associations
Implicit stereotypes

Group Attribution error
Out-group homogeneity bias
Halo effect

Stereotypical bias

Prejudice

Reporting Bias

Selection Bias

Correspondence bias
In-group bias

Bias blind spot
Confirmation bias
Subjective validation
Experimenter’s bias
Choice-supportive bias
Insensitivity to sample size
Neglect of probability
Anecdotal fallacy
lllusion of validity
Automation bias

Table 1: Causes of Unfairness from Humans

The goal of this document is to help kick-start the conversation on how to we might begin to
works towards systems where no subgroup of users, such as users in a Fairness Vanguard
system, receives disproportionately worse output/behavior from a system, or significantly
worse outcomes. To do so, this document provides details of metrics relevant fairness, with
links to more corresponding code and case examples increasing over time.

Why is this Important?

Google strives for algorithmic fairness across products. As we begin to craft policy around
algorithmic fairness, this document starts to outline the nitty-gritty of how we can measure and
promote optimally equal outputs for users -- at the level of the math, algorithms, and code.

3 Built with the help of The Cognitive Bias Codex:

https://upload.wikimedia.org/wikipedia/commons/a/a4/The _Cognitive_Bias Codex - 180%2B_biases%2C_de

signed by John_ Manoogian_lll %28im3%29.png



http://go/fairness-vanguard
https://upload.wikimedia.org/wikipedia/commons/a/a4/The_Cognitive_Bias_Codex_-_180%2B_biases%2C_designed_by_John_Manoogian_III_%28jm3%29.png
http://go/fairness-vanguard
https://upload.wikimedia.org/wikipedia/commons/a/a4/The_Cognitive_Bias_Codex_-_180%2B_biases%2C_designed_by_John_Manoogian_III_%28jm3%29.png
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Many checks and balances are being put in place to help provide an equitable experience across
user subgroups. When those checks and balances require a deep dive into the model itself, this
document provides the starting point of what to do.

Relevant Documents, Groups

Documents

go/fair-not-default

go/links-fairness

go/ml-fairness-prd

go/algorithmic-unfairness-definition
https://g3doc.corp.google.com/experimental/model_understanding/g3doc/tools.md
Directional Awareness (Kona models, Smart Reply)

Algorithmic Bias Testing Playbook

[Perspective] ML Fairness

9. Equality of Opportunity in Machine Learning

10. Learning Fair Representations

11. Beyond Globally Optimal: Focused Learning for Improved Recommendations
12. Frustratingly Easy Domain Adaptation
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Groups

13. go/ml-fairness

14. go/data-fairness

15. go/biasgang

16. go/fairness-vanguard
17. go/glassbox

18. go/jigsaw

19. Master 1*2 Tracker
20. go/uhs

21. go/mix

22. go/pair

Datasets

23. UCI Census Income Dataset
24. UC Berkeley Admissions Dataset
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https://g3doc.corp.google.com/experimental/model_understanding/g3doc/tools.md
https://docs.google.com/presentation/d/1VOPJQ_NTRU9MjKZQTc9Iw79gmwD7LruaKVUb54ODVSQ/edit#slide=id.g18d027bb88_0_91
https://docs.google.com/a/google.com/spreadsheets/d/1hmrL9EFT-xGtCcsLCWrJ_9GdcSoDbNrP8DtiLa8AptU/edit?usp=sharing
http://go/algorithmic-unfairness-definition
http://go/uhs
http://go/fair-not-default
http://go/jigsaw
https://docs.google.com/document/d/1Sir8U83HKVmSO8tmGAVNUXJ-35onmG-3O5jVTyj3EQ4/edit#heading=h.v1878p3oikyi
http://go/fairness-vanguard
https://drive.google.com/file/d/0B7HlkIYTc2xsMVVPNGh2Wk9CN0tOT04zYnRPd0tLT185bjJJ/view
https://docs.google.com/a/google.com/document/d/1CFMhOpSDIZqy0i_26JKnkGavGfQQt3X8kiONswf-Pm4/edit?usp=sharing
http://go/pair
http://go/ml-fairness
https://docs.google.com/presentation/d/15gj2pBvQAHIVrACeZ3odKHxec9ts4AQ-X5bexW6YQTA/edit#slide=id.p
https://docs.google.com/document/d/123LvUATlWEUD6AzsloeGQt_LAdx0zli9FkjGCoxoQvI/edit#heading=h.5ulmpzmztvy7
https://archive.ics.uci.edu/ml/datasets/Census+Income
https://docs.google.com/a/google.com/document/d/1c32nwhd3W4DyP-a55KbLs1hp3uowW1YhEBqqd7ll4Uc/edit?usp=sharing
http://go/glassbox
http://www.umiacs.umd.edu/~hal/docs/daume07easyadapt.pdf
http://go/links-fairness
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Definitions

Algorithmic Unfairness

Algorithmic “Unfairness” at Google refers to algorithms that are unjust or prejudicial towards
people. For a detailed definition, see the Algorithmic Unfairness document. We approach this by
grouping users into different subgroups, and working towards algorithms with output that does
not disproportionately negatively affect any one subgroup.

Fair Performance

Fair performance is defined based on model performance and user experience.

e For model performance, the proportions of true positives, false positives, and false
negatives for system prediction categories should be relatively equal across subgroups.
We discuss this in the context of a confusion matrix below.

e For user experience, predictions over time should demonstrate that the relevance of
learned user behavior increases while the relevance of user’s (known or inferred)
personal attributes diminishes. (Such as race, gender, etc -- see Static attributes
definition below).

e Performance is as close to equal as possible for an output category when the
subgroups have roughly equivalent output for that category.

o And subgroups may need to be discovered/re-created within the data.
o Output should often include, for example, False Positive Rate and False Negative
Rate.

e However, that may not always be possible, due to Intrinsic Hardness issues discussed
later. In that case, we strive for optimally equal performance -- performance that is as
close as can be to equal performance across subgroups.

User Subgroups

User subgroup categories may be either pre-defined or discovered in the data.

e Pre-defined subgroup categories are those defined manually, and include categories
based on race, income, sexual preference, gender, religion, age, and political affiliation.

e Discovered subgroup categories are those based on the data available. This includes
weakly supervised clusters that aggregate users based on similar
appearance/language/interactions with the technology, self-identified categories, and
fine-grained categories that don’t necessarily correspond to the pre-defined categories
for broad subgroups. For example, for the broad subgroup “race”, we aim to discover
subgroups without being bound by the U.S. Census categories

e For product impact now, we merge the two: Using broad pre-defined categories and
consensually-annotated seed data to snowball the discovery of more and more group
members.


http://go/algorithmic-unfairness-definition
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e Moving forward in research, we are be exploring fully unsupervised fairness, also called
prescient fairness (term from Maya Gupta), where we have no annotated samples.

User Attributes

User attributes may be either static or diachronic.
e Static attributes are those that are relatively stable/unchanging for a user, or changing at
a predictable/known rate. These include race, national origin, gender, age, sexual
preference, religion, political affiliation.
e Diachronic attributes are that that change over time, defined by the user’s behavior with
the system.

Intrinsic Hardness

We define a subgroup as intrinsically hard if accuracy is not positively affected by changes in
data size, model capacity, and feature adequacy.

Reporting Bias

Reporting bias refers to the fact that what people talk about and share in the real world is a
subset of the things that are true in the real world.
e We specifically tend to mention things that are outside of our day-to-day-norms; we do
not tend to mention the things that “go without saying”.
This can dramatically affect what our models learn from world data.
For example, using text-based statistics, the probability of murdering is much higher than
the probability of exhaling.

Word Teraword Knext Word Teraword  Knext
spoke 11,577,917 244,458 hugged 610,040 10,378
laughed 3,904,519 169,347 blinked 390,692 20,624

[ murdered 2,843,529 11,284 | waslate 368,922 31,168
inhaled 984,613 4,412 [ exhaled 168,985 3,490 ]
breathed 725,034 34,912 was punctual 5,045 511

¢ Inlearning an embedding for a word like “gay”, the meaning will be overloaded with a
“porn” connotation -- more so than for “straight”.

e Note: The approach of looking up number of results could be useful for talking about unfairness
examples without exposing any google products directly.

e Doing an image search for “professor”, you will see significantly more males than in the
true distribution of male professors; “hot female” professor is a common modifying
phrase for “professor”, but “male” is further down (ostensibly because it is less
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mentioned -- it is treated as more intrinsic, or goes-without-saying, for professor).

Go gle professor B L

B - [ = [ o= [ e [ oo | o | e

Practices for Fairness in Machine Learning

Fair data collection/annotation design
Fair training data and development data
Fair testing data
Adequate modeling, including architecture and hyperparameters
Fair training, with an objective function that is sensitive to optimally equivalent
performance across user subgroups
6. Fair features
7. Fair variables
8. Fair evaluation
Tests for 2-8 are detailed in the Steps for Examining ML Systems with Disproportional Outputs.

apswbn=

Metrics

One way to create metrics relevant to fairness is to focus on creating
similar/comparable experiences for all users.

For product, this can mean modeling each user as a single data point rather than each user activity. For
example, in YouTube videos, we may want to model the users who watch YouTube as single data points,
rather than modeling each video-watch as a single data point, which will favor users who watch YouTube more
often.

Model Performance: Classification and Discrete Outputs

We seek to measure the differences in predictions across subgroups. To do this, we calculate a
confusion matrix of predictions on each subgroup, and make adjustments based on what this
tells us.
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The confusion matrix is a detailed view of how a system is performing. Most groups are already
using evaluation metrics that can be calculated from this, which we outline in the appendix.
Most classification-based system evaluation is calculable directly from the confusion matrix.

For evaluating the fairness of a model’s performance, we focus on the False Positive Rates
(FPRs) and False Negative Rates (FNRs) between different subgroups. These measure whether
things are being overly predicted for some subgroup (FPR); and whether things are being overly
left out for some subgroup (FNR). Further extensions can be made to other evaluation metrics
that are common in different products, listed below. We aim to design algorithms so that
different subgroups have roughly equal FPRs and roughly equal FNRs for different categories.
e When FPR for a given category y is high for some subgroup, the model is overpredicting
y for that subgroup. See the Appendix, False Positive Cases, for a detailed breakdown of
different FPR cases. This happens for either subgroup attributes, when the model
overpredicts an attribute is present for a subgroup, or subgroup identity, when the model
overpredicts that a subgroup is present when it is not.
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e Examples.
o These demonstrate False Positives for the subgroup “female”.

awesome students in my time for a
» variety of reasons, but too many
G niggas people things
1 2 3 4 5 6 7 . 8 9
qwerT T tyuilbo

. me 3:28 PM

| have an engineer starting on 4/3, starting in
SEA on 4/10. | was hoping you'd be
available as a mentor for her. What do you
think?

Female Noogler!

Thanks,

Is your engineer a SETI? | don't think | have
the bandwidth to mentor right now but | can
possibly help find someone on my team that
would be willing.

Assumption that engineer is male??

C(es, heis ‘ [ Il ask l No, he is notb

Example: Subgroup Identity, high FPR.
The predicted "he” pronoun in the
SmartReply is an instance of the model
overpredicting the subgroup male given
the recognized category "enginesar”

But maybe it's the students in the
atmosphere. | think there were lots of

3:28 PM

.me

| have someone starting on 4/3, starting in
SEA on 4/10. Would you send her some

pointers?

\ Female Noogler!
Thanks,
Hi [

( go/pm jb[ go/ml-fairness ]

PM assumed, but not engineer

Example: Subgroup Attribute, high FPR.
The predicted “PM” word in the
SmartReply is an instance of the model
overpredicting the category “PM” given
the recognized subgroup female.

e This image demonstrates a False
Positive, potentially for a race subgroup. It
was submitted to us from someone who
does not use this term in their texting.

e When FNR for a given category y is high for some subgroup, the model is
underpredicting y for that subgroup. See the Appendix, False Negative Cases, for a
detailed breakdown of different FPR cases.

To calculate FNR, FPR, and related metrics, create a confusion matrix.
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The Confusion Matrix

For each subgroup s, prediction category c:

Predictions p_,

Predictions Positive

The instances where the model
predicts that something exists, and
the reference says it does exist, are
the True Positives.

References
Positive

TP, True Positives = References
Positive N Predictions Positive

Predictions Negative

The instances where the references
say something exists, and the
model does not predict it, are the
False Negatives.

FN, False Negatives = References

Positive N Predictions Negative
Also known as Type Il Error

Calculate

True Positive
Rate/Sensitivity
/Recall

False Negative
Rate/Miss Rate

The instances where the model
predicts something exists, and the
reference says it does not exist, are
the False Positives.

References
Negative

» ® 0 S O =0 =-~0 X0

FP, False Positives = References

Negative N Predictions Positive
Also known as a Type | error

The instances where the references
say something does not exist, and
the model does not predict it, are
the True Negatives.

TN, True Negatives = References
Negative N Predictions Negative

False Positive
Rate/Fallout

True Negative
Rate/Specificity

Calculate

Precision/Positive Predictive
Value, False Discovery Rate

Negative Predictive Value,
False Omission Rate

LR+, LR-

Table 2. A Confusion Matrix. Create for each (subgroup, prediction) pair. Compare across
subgroups for each prediction category.

In designing your project, make sure that you make a good decision about trade-offs between
false positives/false negatives/true positives/true negatives. For example, you may want very a
low false positive rate, but a high true positive rate. You may want a high precision, but a low

recall is okay. Etc.

e ufj ulj Choose your evaluation metrics in light of these desired tradeoffs.

In what follows, we lay out a step-by-step approach for minimizing disproportional outcomes
across subgroups. We refer to this as optimally equal values for FPR and FNR.
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Steps for Examining ML Systems with Disproportional Outputs

Measure whether disproportionately poor prediction on one subgroup is a function of the data,
architecture, hyperparameters, features, variables, or training procedure. Steps for this are
outlined below.

At a high level, the idea is:

(1) Collect the data well and preprocess it well

(2) Check where there are potential problems (subgroup evaluation)

(3) Examine the effect of data to determine whether to add more data and/or address
modelling issues (model adequacy, model capacity).

(4) If neither help, or adding more data is prohibitive, check feature and variable adequacy.

(5) If none of this helps, consider updating your objective function.

(6) If steps outlined in (2) through (5) do not improve performance on a subgroup, we
categorize it as intrinsically hard -- a subgroup that is more difficult to get equivalent
performance on, all else equal, including model design, optimal hyperparameters, and
equal number of training data instances with other subgroups.

We assume that systems have a pre-defined, well-motivated evaluation metric that they are
using.

e The evaluation metric should be designed so that it has the best product-specific
trade-offs better true positives, true negatives, false positives, and false negatives (see
the Confusion Matrix).

e For a product example, some systems may want to have low recall (missing a lot of
stuff) in exchange for high precision (of the limited amount of stuff the system produces,
it's all correct).

¢ In clinical domains, it's often preferred to have a low false positive rate, but a high true
positive rate (see Confusion Matrix).

e Please see The Appendix for details on different evaluation metrics.

Step 1. Data collection and preprocessing Addresses Fairness Question: Is your data
collected to minimize the effects of Causes of Unfairness from Humans (Table 1)?
Problem Area: Data Collection

Need to be added as its own doc.

From this step, we produce: Training Data, Val-Train Data, , and Test
Data (held out)
Usually the full dataset is split up to something like, 60% train, 10% val-train, g

20% test
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Step 2. Subgroup Evaluation Addresses Fairness Question: Are subgroups treated
equally by your system?
If any of these tests show unfairness across subgroups for a prediction category, move to

Step 3.
Many of these checks may be possible to do through go/mix-lantern.

Global Model
e Train a full model using the training data.
e Inthe , for each subgroup s, for each prediction category s,

e Create a Confusion Matrix.
o Use the model trained on the training data to make

o For each subgroup category s_, pull out the predictions and the references
(ground truth).

o If this is a ranking/score system, then the category s, is the bracket/position/tier.

i. Example: “Top 1", “Top 5", “Top 10", “Will Get Loan”, “Will Not Get Loan”
iii. A common evaluation metric is Precision@K. That is, out of the top K results,
what is your precision?
iii.  Other options: FPR@K and FNR@K.
o Example: For subgroup s based on Race, your category might be “has flowers”,
and your outputs might be “True” and False”:
i.  The number of correct “True”s are your True Positives (TP).
ii.  The number of correct “False”s are your True Negatives (TN).
iii.  The number of incorrect “True”s are your False Positives (FP).
iv.  The number of incorrect “False”s are your False Negatives (FN).
v.  This is the subgroup attributes binomial case.
vi.  From these values, you calculate FPR and FNR.

o Example: For subgroups s based on Race, your category might be “has X", and
your possible predictions might be “flowers”, “dishes”, and “puppies”. For the
“flowers” prediction:

i.  The number of correct “flowers” are your True Positives.
ii.  The number of times you correctly do not predict “flowers” are your True
Negatives.
iii.  The number of incorrect “flowers” predictions are your False Positives.
iv.  The number of times you incorrectly do not predict “flowers” when they are
actually there are your False Negatives.
v.  This is the subgroup attributes multinomial case.
vi.  From these values, you calculate FPR and FNR.
e Calculate the target task evaluation metric, the False Positive Rate (FPR) and False
Negative Rate (FNR) for each subgroup s, prediction category c:
False Positive Rate = FP / (TN + FP)
e False Negative Rate = FN / (TP + FN)
e The FPR values here ideally will be roughly equal for all subgroups.



https://g3doc.corp.google.com/intelligence/lantern/g3doc/index.md?cl=head
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e Similarly, the FNR values here ideally will be roughly equal for all subgroups, if they can
be.

Ditto for whatever target evaluation metric you're also working with.
If they're not, then that is one source of system unfairness.

Subgroup-specific Models
Same as above Step, but train individual models, one for each subgroup, testing on the

e If the subgroup does not have enough instances to train an ML model (thousands of
examples), this is not feasible.

e If there is enough data, then you can check out whether a subgroup-specific model is
succeeding when a global model is failing, and if so, make a move to bring in
subgroup-specific models.

o If the subgroup-specific model is also doing poorly, move on to Step 3.

If any of these tests show unfairness across subgroups for a prediction category, move to
Step 3.

Step 3. Check Effect of Model and Data. Addresses Fairness Question: Do you need
more data or a better model?

Retrain and test new models as you gradually increase the training data.
e For each subgroup, plot the target evaluation metric, the FNR, and FPR values on the
y-axis, vs. the amount of training data (# examples) on the x-axis.
o Create Plots For:
m  Subgroup category predictions, model trained only on data from the
subgroup.
m  Subgroup category predictions, model trained on the overall data.
o For each of the above, model initialized from the overall population model.
e Could additionally put all the subgroups on the same plot to observe the differences
between subgroups.
e For these plots, overlay and include:
o The same plot for all data
o The same plot for all data but the subgroup



Privileged & Confidential

Target-subgroup-only Models vs. Full Dataset, False Positive Rate as Training Data Increases

0.8 \ = full dataset

= subgroup-more data
plz
0.6

subgroup - better

% model plz

ar - r - =1 E=115T

% ) 4 - j~,-l.|t3g_|-.n:||_--|:nr_nt:rw.t|..:ll_-r

o instrinsically hard

B

1

[T

an A el Tl 101100
20 40 &l 20 100

% of Training Data

Table 3. Example outcomes from plotting the subgroup False Positive Rate vs. the full
population model (rest-of). Depending on the difference between the curves, you could
find evidence for more data, a better model, or intrinsic hardness of the problem.

Problem Area: Model Inadequacy
e There is model inadequacy if you see:

o Evaluation on a subgroup improves (e.g., the False Positive Rate goes down)
when the model is trained specifically on that subgroup, but the improvement is
much weaker for that subgroup when the model is trained on the full dataset

o The curve is not showing a good trend (see orange line in Table 2)

e This can be due to a couple things relevant to the model itself:
o Insufficient model capacity in the global model.
m ML Technique: Change the model architecture to allow for increased
modelling capacity.
e Deeper or wider models
e Check out go/wide-n-deep to leverage the benefits of both.
o Inadequate hyperparameters: A model may have adequate capacity, but is tuned
to perform well for larger subgroups that make up the bulk of the overall data.
m Integrate details from Beyond Globally Optimal.
m Choose hyperparameters to do well across subgroups, not just to do well
on the aggregate, overall data.]
m Use go/vizier to make selections.
e This may also be solvable with simple changes to the data:

o ML Technique: Threshold/cap the number of data points for the largest
subgroups.



https://drive.google.com/file/d/0B7HlkIYTc2xsMVVPNGh2Wk9CN0tOT04zYnRPd0tLT185bjJJ/view
http://go/vizier
https://sites.google.com/corp/google.com/wide-n-deep
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m If your model is saturated with data from the largest subgroups, it may
“overfit”, or it may be spending all it's modeling power on those
subgroups, at the expense of the others.

o ML Technique: Duplicate/augment data instances of the minority class.

m Simply duplicating instances can help, although testing in this case
should be rigorous: The concern with simply duplicating instances is that
the model will “overfit”, meaning it will create strong correlations between
things that are not actually correlated in the test/run-time data.

m  More details on domain adaptation in these cases would be useful to
include here; not yet done.

Problem Area: Data Inadequacy
e If evaluation metric values are not levelling off for the subgroup, but actually seem to be
improving as you increase training data, you now have some motivation to augment data
for that subgroup. See the red line in Table 2.

o ML Technique: Incrementally increase the training data for a given subgroup,
plotting the changes in FNR and FPR as before until equal output performance is
achieved.

m The ideal amount of data needed can be estimated from the trend line on
your plot.

o Not working? If performance begins degrading for the rest of the development
data, or for other subgroups, go to Step 4.

o If data augmentation cost is prohibitive, or if doing so does not seem to improve
equitability, go to Step 4.

If none of these solutions fix the problem, or if the estimated amount of data you would
need is cost-prohibitive, move to Step 4.

Step 4. Check Feature and Variable Adequacy. Addresses Fairness Question: Do you
need better features or variables?

e If one subgroup gets significantly lower evaluation scores given the same amount of
training data, or performance is not improving as we scale up the amount of training
data, this suggests we need new features or new variables, more data won't necessarily
be enough.

o Example: Smart Reply seems to be preferring one outcome for women, another
outcome for men, and one is better than the other. In deep learning space,
“gender” might not be an explicit feature -- it may have been learned implicitly --
and this is creating an unfairness issue.

Problem Area: Feature and Variable Inadequacy
e To guide the creation of new variable and features, make some of the implicit explicit:
o Use RankLab to see what features are being given the most weight.
o Do Feature Ablation (also possible with RankLab) to remove features and see the


http://go/RankLab
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effects on down stream performance.

o Use active learning to find weak data points that should be labelled,
bolstered.

m In active learning, the places where the model struggles the most during
training are output to humans -- to provide additional annotations, or more
training data in light of the model’s confusion.

o Predict implicit categories that may be at play, such as those within sensitive
groups.

m Examine correlation between implicit categories and desired categories.

m Based on your findings, you might, e.g., preferentially select features or
data that move away from these correlations; or remove data/features
that enforce these correlations.

o Manually inspect content given similar representations by your system.

m Using e.g., pairwise cosine distance between last hidden layers, where
one instance produces an incorrect output and the other instance
produces a correct output, and find those instances that are closest
together.

o Manually inspect errors in low-confidence cases and high-confidence cases.

e As discussed above, when we learn from naturally occuring data, they will already be
biased because of reporting bias. This means biased features, reflecting the bias in
your data.

e ML Technique: “Debias” your features, for example, debias your embeddings.

o See: Man is to computer programmer as woman is to homemaker? Debiasing
word embeddings

o Code being developed at google3/learning/fairness.

m Possible partners: YouTube, Rephil

e ML Technique: Develop new features, iterate from Steps 2-4 to measure their effect.
ML Technique: Develop auxiliary tasks to predict new variables, use a multi-task
learning framework, iterate Steps 2-4 to measure effect.

o See go/tf-multitask and Lantern’s support for multi-headed models.

o For example, if your deep learning model is overpredicting LGBT content as toxic,
update the model to predict “LGBT/Straight”, as well as
“positive”/”"negative”/"neutral”, and toxicity. This can be trained jointly end-to-end
so as not to need too much additional compute resources.

m If you want to get fancy, more coarse-grained tasks should be earlier in
your model than the more fine-grained tasks, rather than all at last layer of
the model.

e ML Technique (less preferred): Develop auxiliary tasks to predict new variables, use a
pipeline framework, iterate Steps 2-4 to measure effect.

o For another example, if your pipeline system is overpredicting LGBT content as
toxic, first predict LGBT; use those scores as input features to a second step to



http://go/tf-multitask
https://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings.pdf
https://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings.pdf
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predict “postive/negative/neutral”; use those scores and the previous LGBT
scores as input features to predict toxicity.
e ML Technique: Active learning to discover samples that should be additionally
annotated.
o In active learning, the places where the model struggles the most during training
are output to humans -- to provide additional annotations, or more training data in
light of the model’s confusion.

Step 5: Objective Function Addresses Fairness Question: Do you need a different
objective function?
Problem Area: Objective Function

e This one’s tricky.

e Here's the tl;dr: Machine learning is used to train a model. The model is trained by using
an objective function. This objective function (OF) can be problematic.

e Many objective functions do some form of “maximum likelihood estimation” (MLE).
Roughly, this pushes the model to have its parameters/weights make the training data
the most likely output of the system.

o Several areas of concern here.

o Overfitting: Spurious correlations in your training data are treated as meaningful
correlations, even when they are not (or are, e.g., prejudicial/harmful).

o Overgeneralization: If your training data has a distribution over outcomes such
as “70% A, 15% B, 10% C, 5% D", this can get overgeneralized in your model as
“80% A, 20% B” -- the less likely and minority cases can get washed out.

e This is a big move, but one option is to change the objective function.
o Incorporate explicit fairness constraints.
o See Equal Opportunity and Equalized Odds.

If Steps 2-5 have all been tried, and still one subgroup does not show signs of improving, or
continues to get significantly lower accuracy — The data for a subgroup has “Intrinsic
Hardness”. (See green line in Table 2.)

e Putting it another way: if you have a bunch of smart ML researchers try to train the best
model they possibly can for the "harder" subgroup, and they still can't get the same
accuracy as the "easier" subgroup, then the problem is intrinsically harder. Go to
Research Approaches for Equitability.

For now, ML Technique: focus energy on modelling that subgroup in particular, including
increasing data, changes to model, which may include additional predictions and constraints in
a multi-task learning framework, and changes to features.
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Model Performance: Continuous Outputs

Systems that output a real value rather than a hard class label require a somewhat different
procedure. These are often regression-based systems, and examples include pricing,
probability estimation like pCTR, risk scores, etc.

In each case, the work here applies to evaluating the final category decisions based on these
scores. For example, in a system that uses scores to determine whether something is “in” or
“out”, those “in” and “out” decisions are what we can evaluate fairness on, using the
classification-based methods above. Precision@K is a common metric to use, meaning that
out of the top K outputs from your system, what is the precision within that K? False Positive
Rates and False Negative Rates, as described above, can be useful for the task of determining
fairness: False Negative values get at how much the system is missing.

In further work, we will add more details about continuous outputs. For now, the recommended
practice is to use the classification-based fairness evaluation, using the output category
decisions from a score-based system.

User Experience

Steps towards Equitable User Experiences

User Experience Test: Measure whether any subgroups are receiving unfair information from
the system.

Subgroup experiences should also be fair. Testing this can involve measuring what percentage
of things that the users are exposed to are biased towards some X. On the other hand is the
related issue of testing whether users within a subgroup are receiving reasonably well-informed
diversity*, as additional system objectives are ment (e.g., user engagement).

Similarly, an end-to-end ranking metric may aim to show results that provide equal
opportunities, equal positive experiences, for each subgroup. This can be checked in part by
examining the probabilities for different labels, based on subgroup memberships.

For evaluating the fairness of a user’s experience, we focus on measuring the effect of static
user attributes on model prediction, and calculating the correlation between output predictions
and users’ static attributes.

Step 1. Measure how static attribute effect much static attributes are influencing system
decisions for different subgroups.

4 Not all diverse options should be equally encouraged for a user, hence we say “reasonably
well-informed” diversity.
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w

Let u = observed user behavior with the system, a = sensitive attributes, and g = a correct
predicted value
p(glu,a) should tend towards p(glu,a’) over time.

a. Probability of output given mutable and immutable should tend towards

Probability of output given mutable and any other immutable.
This is Equality of Opportunity in Machine learning.
Work towards user experiences that are agnostic to variations across sensitive
attributes, unless it’s an attribute that should be treated differently (e.g., accessibility,
neuroatypicality).

a. One way to do this is to swap correlated behaviors for one subgroup into the
behaviors for another subgroup; do this round-robin so that each subgroup has
representations for behaviours correlated with another subgroup’s behavior.

b. The probability of q across these swaps should remain the same.

c. To be tested regularly, e.g., every week.

Step 2. If a static attribute remains relevant, ML Technique: fine-tune or retrain the model with
the addition of the observed user behavior types as additional attributes.

Testing Significance

tl;dr: Testing significance on the same data more than once requires correction to
handle increased chances of finding significance with multiple tests. Methods to handle
this include:
o Bonferroni Correction (ML Technique): For your desired p-value, simply divide by
the number of tests you are running. So, if your p=.05, and you number of tests is
10, then your Bonferroni-corrected p-value is: .05/10 = .005
m Bonferroni-corrected p-value = given p/number of tests
o Fisher's Combination Test
For any test you run to be scientifically valid, you must see if the null hypothesis can be
rejected. The null hypothesis simply states that the observed differences between
groups are due to random chance.
o Example Null Hypothesis: There is no statistically significant relationship between
the number of features and precision on subpopulations A and B.
o Example Null Hypothesis: Model is equally good for all users.
From the null hypothesis, you can derive the alternative hypothesis:
o Example Alternative Hypothesis: This is a statistically significant relationship
between the number of features and precision on subpopulations A and B.
o Example Alternative Hypothesis: Model is not equally good for all users.
When you test significance, you are essentially asking “how likely is it that these
observations are due to random chance?”.
However, the more you test significance, the more the chances of finding significance
increases. This is also known as p-hacking, and has been written about extensively. Use
the Bonferroni Correction or similar to correct for this.


https://en.wikipedia.org/wiki/Data_dredging
https://arxiv.org/abs/1610.02413
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e Monte Carlo Simulation: Look at different slices/views of data and measure there.
Under the assumption of equitability/fairness across predictions, we would find that
accuracy is roughly the same across different simulations.

e Once we discern that something is not due to random chance, turn to: Is this because
that subsample is intrinsically hard, or extrinsically hard?

Research Approaches for Fairness
Ordered so that more straightforward work is at top, more speculative work closer to bottom.

Latent Attributes

ML Technique: Train models to predict attributes for each labeled prediction, then explore the
attribute predictions on the valtest set to dig into what assumptions the model is implicitly
making, and how this differs across groups. Adjust model to expliclity model and address these
attributes when making predictions.

o This can be done in a multi-task learning framework, where several things are predicted,
including the target category and a relevant subgroup.

o For example, given a model that predicts “professor”, fine-tune it to predict subgroups
that are relevant to fairness groups, such as “gender”, by predicting the fine-grained
subgroups of, e.g., “male” and “female”.

m If “professor” and “male” predictions align, or the average of the last hidden
layers for each are close together in vector space, then you know your model is
biased in that direction.

Equalized Odds

[Modified from Equal Opportunity paper]
Based on protected attributes. We say that a predictor Y satisfies equalized odds with respect

to protected attribute 4 and outcome if Y and Aare independent conditionalon ¥ .

Unlike demographic parity, equalized odds allows Y to depend on 4 but only through
the target variable Y . As such, the definition encourages the use of features that allow to
directly predict Y , but prohibits abusing 4 as a proxy for Y .

As stated, equalized odds applies to targets and protected attributes taking values in any
space, including binary, multi-class, continuous or structured settings. The case of binary
random variables Y, Y and 4 is of central importance in many applications, encompassing the
main conceptual and technical challenges. As a result, we focus most of our attention on this
case, in which case equalized odds are equivalent to:

P(?:1|A:0, Y:y):P(?:uA:l, Y:y),ye {0,1}


https://arxiv.org/pdf/1610.02413.pdf
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For the outcome y = 1, the constraint requires that Y has equal true positive rates across the
two demographics 4 = 0and 4 = 1. For y = 0, the constraint equalizes false positive rates. The
definition aligns nicely with the central goal of building highly accurate classifiers, since Y=Y

is always an acceptable solution. Equalized odds enforces that the accuracy is equally high in
all demographics, punishing models that perform well only on the majority.

Equal Opportunity

Based on protected attributes. A relaxation of equalized odds, requiring non-discrimination only
within the “advantaged” outcome group; say when Y = 1. This leads to a relaxation of our

notion that we call “equal opportunity”.

We say that a binary predictor Y satisfies equal opportunity with respect to 4and Y if
P(?=1|A=0, Yzl):P(?=1|A:1, Y=1).

Equal opportunity is a weaker notion of non-discrimination, and thus typically allows for stronger
utility (see case study below).

A score R satisfies equalized odds if R is independent of 4 given Y . If a score obeys
equalized odds, then any thresholding Y=1I {R >t} of it also obeys equalized odds (as does any
other predictor derived from R alone).

Entropy Measures

A number of algorithms leveraging entropy (e.g., cross-entropy error, perplexity, surprisal, KL
divergence) can be used to stress-test how well different trained models are fit to the training
data in each group by comparing these metrics across different batches within a group.

Variance

Looking at within-group variance, as well as entropy differences within different subgroups, can
help to define which groups might benefit from having some instances move to another
cluster/group membership, or new cluster/group membership

Reporting Bias

[Adapted from Reporting Bias paper]

e Train models to predict latent (sparsely labelled) attributes that may or may not be
observed/annotated/mentioned.
o  Examples: sexual, emotional, violent
e A human-biased prediction h can be factored as:


http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Misra_Seeing_Through_the_CVPR_2016_paper.pdf
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o  Presence v - Is the object present?
o  Relevance r - Is the object relevant for a human?

How relevant is the concept, given presence status? |s concept present?
" L +
h(y|l) = r(ylz =, Hv(z = j|I)

4€{0,1}

This builds up the “latent” model of whether the concept is present or not -- even if it's not
explicitly mentioned/annotated.

Prediction Bias

Compute and compare prediction bias for different subgroups. It is reasonable to compute and
compare prediction bias E[H(X) | A] - E[Y | A] across suitably large populations A.

Area Between F*R Rates

A model tested on a particular subgroup, vs. a model tested on the rest of the data with that
subgroup removed, will show different rates of change as the amount of training data increases.

Target-subgroup-only Models vs. Full Dataset, False Positive Rate as Training Data Increases Table 2. Example different rates of
- - fulldataset improvements in subgroup

N T peewmeesss - predictions (target-subgroup) vs.
. ek R predictions for the full dataset.

= subgroup-p

instrinsic

False Postive Rate

The difference between the slope
of the rest-of predictions and the
target-subgroup predictions
provides a direct measure of the
equitability of data increase.

% of Training Data

GANSs to Augment Training data

Use generative adversarial network training with minibatch discrimination (to improve sample
diversity) within each subgroup. As in regular GAN training, the generator creates additional
faces for each batch within a cluster, and the discriminator tries to distinguish whether the
faces have been artificially generated, or belong to the cluster. Once the model is done training,
we can use the network to then generate new training instances to subgroups.
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Note that it is difficult to measure a classifier's performance when the evaluation data is very
small, since a small amount of evaluation data is not necessarily going to be a representative
sample of the population. The approach would be to hold out as much testing data as possible
(of real data), while training on the synthetic GAN data.

CycleGan

Models like CycleGAN can literally turn apples into oranges. We could use something like
CycleGAN to turn records from one subgroup into their equivalent from another subgroup. This
would allow you to ask questions like "would this person have been granted parole if they
belonged to a different race?" etc.

Appendix

Common evaluation metrics for classification-based systems

False Positive Rate, FPR = FP/(TN+FP)
o “Fall Out”
o “Probability of False Alarm”
o This metric measures how often the system makes predictions that
should not be made.
e False Negative Rate, FNR = FN/(TP+FN)
o “Miss Rate”
o This metric measures how often the system misses predictions that
should be made.
e Precision = TP/(TP+FP)
o This metric measures that, for all the predictions made, how correct they
are.
e Recall, Sensitivity, True Positive Rate = TP/(TP+FN)
o This metric measure that, for all the predictions made, how much is being
left out.
e Specificity = TN/(TN+FP)
o This metric measures that, for all predictions made, how much is correctly
left out.
e Mean Average Precision (mAP)
o This metric measures the mean of the average precision scores for each
query.
e F-score (F1) = 2 * (Precision * Recall) / (Precision + Recall)
o This metric measures the harmonic mean of precision and recall, with
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both equally weighted.
o Other harmonic mean F-scores could weight them differently, e.g.,
prioritizing precision by not recall.
e Receiver Operating Characteristic (ROC) Curve
o Graphical plot for False Positive Rate and True Positive Rate
e Area Under the ROC Curve (AUC)
o This metric measures the area under the ROC curve -- is used as a
measure of accuracy.

False Positive Cases

When FPR for a given category y is high for some subgroup, the model is overpredicting y for
that subgroup. This happens for either subgroup attributes, when the model is overpredicts an
attribute is present for a subgroup, or subgroup identity, when the model overpredicts that a
subgroup is present when it is not.

Subgroup Subgroup Subgroup Identity, Subgroup Identity,
Attributes, Attributes, Binomial Multinomial
Binomial Multinomial

The model incorrectly guesses that an The model incorrectly guesses that a

attribute of a subgroup is present when it | particular subgroup is present when it is not.
is not.

Examples
For instance of subgroup_a, model For an instance of subgroup_b, model
incorrectly guesses that the instance is incorrectly guesses that subgroup_a is
“toxic” (when it is not). present (when it is not).
category: is_toxic [ category: is category: sub_a category:
values: True, False | values: toxic, values: True, False | subgroup_id
ref: is_toxic=False | awesome, so-so ref: sub_a=False values: sub_a, sub_b,
y: is_toxic=True ref: issawesome y: sub_a=True sub_c
y: is=toxic ref:
subgroup_id=sub_b
y: subgroup_id=sub_a

For instance of For instance of
subgroup_a, subgroup_a,
category “holding | category “holding”,




Privileged & Confidential

flowers”, model
incorrectly
guesses that they
are holding flowers
when they are not.

model incorrectly
guesses that the
value is “flowers”
when it is not.

category:
holding_flowers
values: True, False

holding_flowers=F
alse

y:
holding_flowers=T
rue

category: holding
values: flowers,
puppies, plates

ref: ref: holding=puppies
y: holding=flowers

False Negative Cases

When FNR for a given prediction category y is high for some subgroup, the model is
underpredicting y for that subgroup.

Subgroup Attributes,
Binomial

Subgroup Attributes,
Multinomial

Subgroup Identity,
Binomial

Subgroup Identity,
Multinomial

The model regularly incorrectly guesses that an
attribute of a subgroup is not present when it is.

The model regularly incorrectly guesses that a
subgroup is not present when it is.

Exampl

es

For an instance of subgroup_a, the model incorrectly
guesses that people from a particular subgroup are
not holding flowers when they are.

For an instance of subgroup_a, the model
incorrectly misses that subgroup_a is present.

category:
holding_flowers

values: True, False

ref:
holding_flowers=True

y: holding_flowers=False

category: holding
values: flowers, puppies,
plates

ref: holding=flowers

y: holding=puppies

values: True, False

y: subgroup_a=False

category: subgroup_a

ref: subgroup_a=True

category:
subgroup_id

values: subgroup_a,
subgroup_b,
subgroup_c

ref:
subgroup_id=subgro
up_a

y:
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subgroup_id=subgro
up_b










