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Rasmus noticed lack of resolution on Danish music...

Poor regional recommendations:
° . Danish rapper band
e D.AD. Danish rock band
e Recommendations:
dominated by generic
Danish head artists

Similar phenomenon in many
other regions.
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recommended_entity Entity | Score
o I syspekt 1.12

Nik & Jay 1.11
2 | W= Nephew 1.10
3 | ™¥® Kim Larsen 1.10
4 W Kim Larsen & Kjukken | 1.09
5 Dizzy Mizz Lizzy 1.09
6 M= T\ 1.09
7 | «"& Thomas Helmig 1.09
8 | %% Shu-bi-dua 1.09
9 [ Magtens Korridorer 1.08

SS¥ Clemens 1.08
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recommended_entity Entity | Score
o B pizzy Mizz Lizzy 1.03
1 | a* Gasolin 0.89
2 | % shu-bi-dua 0.87
3 (I 12 0.86
4 B kim Larsen 0.86
5 u D-A-D 0.85
6 |l kim Larsen & Kjukken |0.85
7 | sort Sol 0.84
s | jonn Mogensen 0.83
9 |«*4 Thomas Helmig 0.83
10 | s Magtens Korridorer 0.83




Known: Recommender quality inconsistent across movies
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We don’t represent users/items equally!
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Wanted: A model that predicts well
for all users and all items.
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Why does this happen?
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The Recommendation Problem
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The Recommendation Problem

Google

Given: Observed (user, item) ratings
Find: A model that predicts the missing
ratings well

Used throughout Google:

p Google play GOOSIQ +
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Power Law of Observations

RMSE considers all observations equally:

1
g D (Xij — (ui,v;))?
(i,j)eX

Therefore it values users and movies with more

ratings far more than others with less ratings.

That is, “Globally optimal” is more focused on
popular, mainstream movies than niche ones.
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Approach

1. Focus Selection - Where should the additional models focus?
2. Focused Learning - How can learn a new model to improve
prediction on a subset of the data?



Approach

1. Focus Selection - Where should the additional models focus?

Subset of columns Subset of rows
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Approach

2. Focused Learning - How can learn a new model to improve
prediction on a subset of the data?

Distinct training and focused validation data

Simple grid search
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Results: Focused by Movie Spectra

Google

Global | Focused
1.1138 1.0212
1.0032 0.9408
0.9862 0.9450
0.9299 0.9053
0.9060 0.8908
0.8764 0.8711
0.8576 0.8552
0.8333 0.8325
0.8090 0.8090
0.7953 0.7953

% Improvement
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Results: Focused by User

Percentile| Global | Focused
0%-1% 1.9989 1.9664
0%-10% 1.4192 1.4107
10%-20% | 1.1177 1.1112
20%-30% | 0.9824 0.9769
30%-40% | 0.8834 0.8782

Google

% Improvement
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Conclusion

1. “Globally optimal” is not
best for everybody.

2. Learn additional models
focused on problematic
regions.

“Myth of the average user!”
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Fight the long-tail with
different representations!
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